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Synthesis of the linear octaarabinofuranoside
related to the terminal fragment of mycobacterial polysaccharides
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A convergent synthesis of linear a-(1-5)-, §-(1-2)-linked
octaarabinofuranoside related to the terminal fragment of
mycobacterial polysaccharides was performed using a [6 + 2]
scheme. The octaarabinofuranoside was obtained as a
4-(2-azidoethoxy)phenyl glycoside which can be further
converted to neoglycoconjugates that are important for the
development of diagnostic tools.
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Microorganism Mycobacterium tuberculosis, belonging to the
genus Mycobacteria, is the main causative agent of tuberculosis. !>
Synthesis of the terminal fragments of M. tuberculosis
polysaccharides is essential for the development of diagnostics>*
and vaccines,>8 as well as new effective antimicrobial drugs.
Recently we found that during the triflic acid-promoted
glycosylation according to a [4+4] convergent scheme between
o-(1—=5)-linked tetraarabinofuranoside bearing 4-(2-chloro-
ethoxy)phenyl (CEP) aglycone and a-(1-5)-, B-(1-2)-linked
tetraarabinofuranoside ~ with ~ N-phenyltrifluoroacetimidoyl
leaving group, along with the key acylated linear a-(1-5)-,
B-(1-2)-linked octaarabinofuranoside, unusual formation of
dodeca- and hexadecaarabinofuranosides was observed
(Scheme 1).° To avoid the undesired process connected with the
oligomerization, we herein propose an alternative synthesis of
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Scheme 1
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the linear a-(1-5)-, B-(1->2)-linked octaarabinofuranoside as a
CEP glycoside using a [6 + 2] convergent scheme with subsequent
conversion to 4-(2-azidoethoxy)phenyl (AEP) glycoside and
deprotection. The presence of AEP aglycone allows the creation
of neoglycoconjugates.

At the first step we performed coupling between
triarabinofuranose CEP glycoside 1 and triarabinofuranose
thioglycoside 2 under NIS/TfOH promotion (Scheme 2). We
obtained linear a.-(1->5)-linked hexaarabinofuranoside 3 in high
yield (87%). It should be noted that a small amount of
nonaarabinofuranoside 3’ (less than 1%) contaminated with
other oligosaccharides was also detected. The less pronounced
oligomerization according to the [3+3] scheme compared to the
[4+4] scheme” can be explained by the influence of the nature of
the leaving group in the glycosyl donor. The O-chloroacetyl
(CA) group in hexaarabinofuranoside 3 was removed using aq.
pyridine to give the new o-(1-5)-linked hexaarabinofuranoside
glycosyl acceptor 4 (see Scheme 2).

At the next step we performed glycosylation of
hexaarabinofuranoside glycosyl acceptor 4 with Ara-B-(1->2)-
Ara p-tolyl thioglycoside 5 containing five triisopropylsilyl
groups (Scheme 3). Despite the absence of a participating group
at O-2 in diarabinofuranoside glycosyl donor 5, we obtained
a-(1-5)-, B-(1-2)-linked octaarabinofuranoside 6 as a single
a-isomer in high yield (85%) whereas no other isomer was
detected. The chlorine atom in the aglycone of the resulting
octaarabinofuranoside 6 was replaced with azido group (NaNjs,
DME, 18-crown-6) to give AEP glycoside 7.

The signals of the anomeric carbon atoms for all
monosaccharide residues in the '3C NMR spectra of the obtained
octaarabinofuranosides 6, 7 resonated in a low field region at 0
104.79, 104.82 (C-1%, C-1V1), 105.87, 105.89, 105.91 (2C)
105.99 (C™Y1), 106.91 (C-1¥1), respectively. The relatively high
chemical shift of the signal of B-linked C-1Y" may be due to the
presence of five bulky TIPS groups (Tables 1, 2 for 6).

We also found some general features in the NMR spectra for
protected octaarabinofuranosides 6, 7 and earlier obtained
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Scheme 2 Reagents and conditions: i, NIS, TfOH, MS 4 A, CH,Cl,, =40 - —10 °C, 20 h (87% of 3, 0.3% of 3a); ii, Py, H,0, 70 °C, 2.5 h (84%).
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Scheme 3 Reagents and conditions: i, NIS, TfOH, MS 4A, CH,Cl,,
—60 - -30 °C, 1.5 h (85%); ii, NaN3, 18-crown-6, DMF, 70 °C for 48 h,
then 80 °C for 48 h (92%).

a-(1-5)-, B-(1-2)-linked hexaarabinofuranosides 10, 11'° with
the same type of substitution (Schemes 3, 4). As expected, all
signals of H-2 and H-3 for benzoylated Ara residues appear in a
lower field in the 'HNMR spectrum compared to the
corresponding signals of silylated residues. A series of signals,
related to the Ara residues with TIPS protection (VII and VIII for
6 and 7; V and VI for 10 and 11) were found in a close region in
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the NMR spectra. We can also note the conservative position of
the signals for glycosylated residues VI in 6 and 7 and residues
IV in 10 and 11; for residue I, and for the signals related to the
coreregion (II-Vin 6 and 7; [I-11l in 10 and 11). The confirmation
of the presence of the glycosidic linkage between the
corresponding monosaccharide residues of octaaarabino-
furanoside 6 was found in the ROESY spectrum. The H-1""
proton signal at 0 5.07 correlates with the signals of H-5""a at
Oy 3.76 and H-5V'b at 8, 4.04. The H-1V proton signal at &y
5.23 correlates with the H-2V" proton signal at 0y 4.19.

All the TIPS groups in azide 7 were removed by treatment
with BuyNF in THF in the presence of AcOH at 40 °C to give
partially deprotected octaaarabinofuranoside 8, which was
further treated with MeONa in MeOH to give the target
deprotected octaaarabinofuranoside 9 in 53% yield over two
steps (see Scheme 4). As expected, NMR data for 9 (Tables 3, 4
for 9) correlated with those found earlier for hexaarabino-
furanoside 12.'° The analysis of '3C NMR spectrum of 9 revealed
the signals for the single B-anomeric carbon C-1V" at 6 102.46
and a-anomeric carbons in the characteristic region at 0 107.58
(C-1V11), 108.68 (C-1Y), 109.62, 109.69 (3 C), 109.73 (C-1"-VT),
Besides, correlations confirming the formation of the glycosidic
bonds between the corresponding monosaccharide residues of
octaarabinofuranoside 9 were found in the 'H-'3C HMBC
spectrum. The H-1VT proton signal at dy; 5.07 correlates with the
C-5VT carbon atom signal at 0 68.3. The H-2V!! proton signal at
Oy 4.14 correlates with the C-1V carbon signal at 6 102.46.

In summary, a convergent synthesis of the linear a-(1-5)-,
B-(1-2)-linked octaarabinofuranoside 6 as a CEP glycoside
following a [6+2] scheme was performed. The use of Ara-3-
(1-2)-Ara p-tolyl thioglycoside 5 containing five triisopropyl-
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Scheme 4 Reagents and conditions: i, BuyNF, AcOH, THF, 40 °C, 16 h; ii, MeONa, 20 °C, 16 h (71%, 53% over two steps).
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Table 1 'H NMR data for protected octaarabinofuranoside 6 with CEP
aglycone.

Oy (J/Hz)*
Residue
H-1 H-2 H-3 H-4 H-5a; H-5b
I 5.82 5.74-5.719 5.74-5.79 4.54-4.63 3.85-3.96;
422 (11.4,4.3)
n-v 5.37, 5.61-5.66 5.61-5.66 4.54-4.63 3.85-3.96;
5.38, 4.16-4.20
5.40°
VI 5.35 5.59(1.6) 5.50 4.54-4.63 3.76 (10.9, 4.6);
4.9, 1.7) 4.04 (10.9, 4.9)
VII 5.07 4.16-4.20 4.37 4.06-4.12  3.72(10.7, 6.1);
4.4,1.7) 3.79 (10.7,5.1)

VI  523(27) 3.99(3.0) 430(1.1) 3.83 3.68 (9.5, 4.6);

(10.4,4.7) 3.85-3.96
4At 600 MHz, CDCls. * Two-proton (2 H) signal.

Table 2 'C NMR data for protected octaarabinofuranoside 6.

¢ (151 MHz, CDCly)

Residue
C-1 C-2 C-3 C-4 C-5
I 104.78 or 81.88 77.05 82.79 65.72 or 65.77 or
104.82 65.79 or 65.84 (2 C)
n-v 105.87, 105.89, 81.46, 77.14, 82.07 65.72 or 65.77 or
10591 (2C), 8150, 77.16, (2C), 65.79 or 65.84 (2 C)
105.99 81.53, 77.21 82.08,
81.55 (2C) 82.11
VI 105.87,105.89, 81.63 77.43 81.76 66.01
105.91 (2 O),
105.99
Vil 106.91 90.93 7757 8744 64.14
VI 104.78 or 78.11 7822 8570 63.74
104.82

Table 3 'H NMR data for deprotected octaarabinofuranoside 9 with AEP
aglycone.

Oy (JHz)*
Residue
H-1 H-2 H-3 H-4 H-5a; H-5b
I 542(1.9) 422 3.97-4.10 4.13-4.18 3.61-3.71;
(4.0, 1.9) 3.82-3.88
1I-VI 4.94-496, 3.97-4.10 3.89-3.92 3.97-4.10 3.61-3.71;
4.96 (1.6) 3.82-3.88
VII 5.07(2.3) 4.13-4.18 3.97-4.10 3.95 3.61-3.71;
(7.8,5.0,2.8) 3.76-3.81
VIII 5.03(4.1) 3.97-4.10 3.97-4.10 3.76-3.81 3.61-3.71;
3.73
(12.0,3.2)

@ At 600 MHz, CD;0D.

Table 4 '>C NMR data for deprotected octaarabinofuranoside 9 with AEP
aglycone.

d¢ (151 MHz, CD;0D)

Residue
C-1 C-2 C-3 C-4 C-5

I 108.68 83.78 78.78 or 84.35 or 68.02

78.82 84.38

I-VI 109.62, 83.25 (4 C), 78.98, 83.95,84.05, 68.28
109.69 (3 C), 83.30 79.18 (4C) 84.16(4C) 40,
109.73 68.34

Vil 107.58 89.27 76.42 83.95 or 84.05 62.48

or 84.16 (4 C)
VIII 102.46 78.78 or 75.87 84.35 or 84.38 64.40
78.82

silyl groups allows one to create a 1,2-trans glycosidic linkage in
the absence of a participating group at O-2 in the glycosyl donor.
After protective groups manipulations, we obtained deprotected
octaarabinofuranoside 9 as an AEP glycoside, which may be
converted to neoglycoconjugates, useful for the development of
diagnostic agents.
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