

Low-temperature oxidation of volatile organic compounds by ozone on Mn-promoted W/Al₂O₃

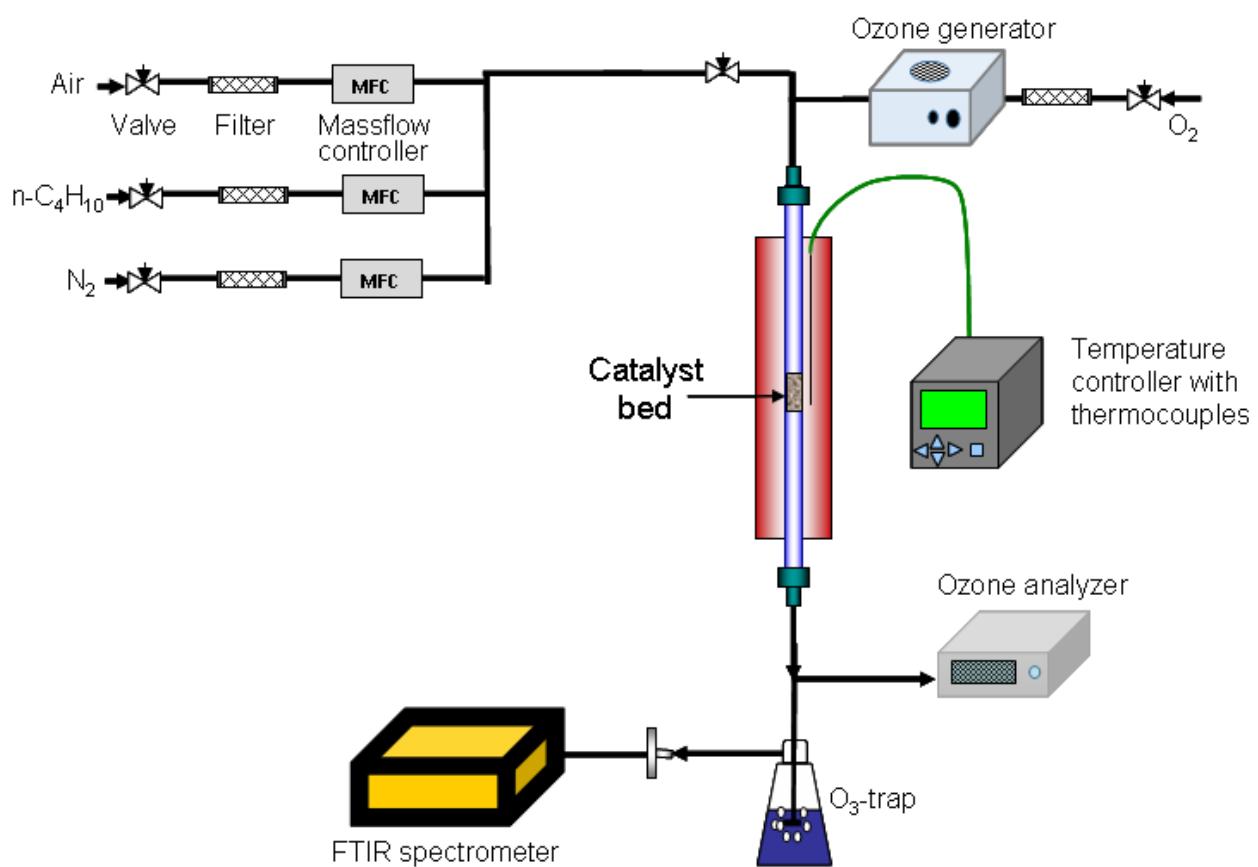
Dmitriy A. Bokarev, Ivan. V. Paramoshin, Galina O. Bragina, Galina N. Baeva and Alexander Yu. Stakheev

Catalyst preparation

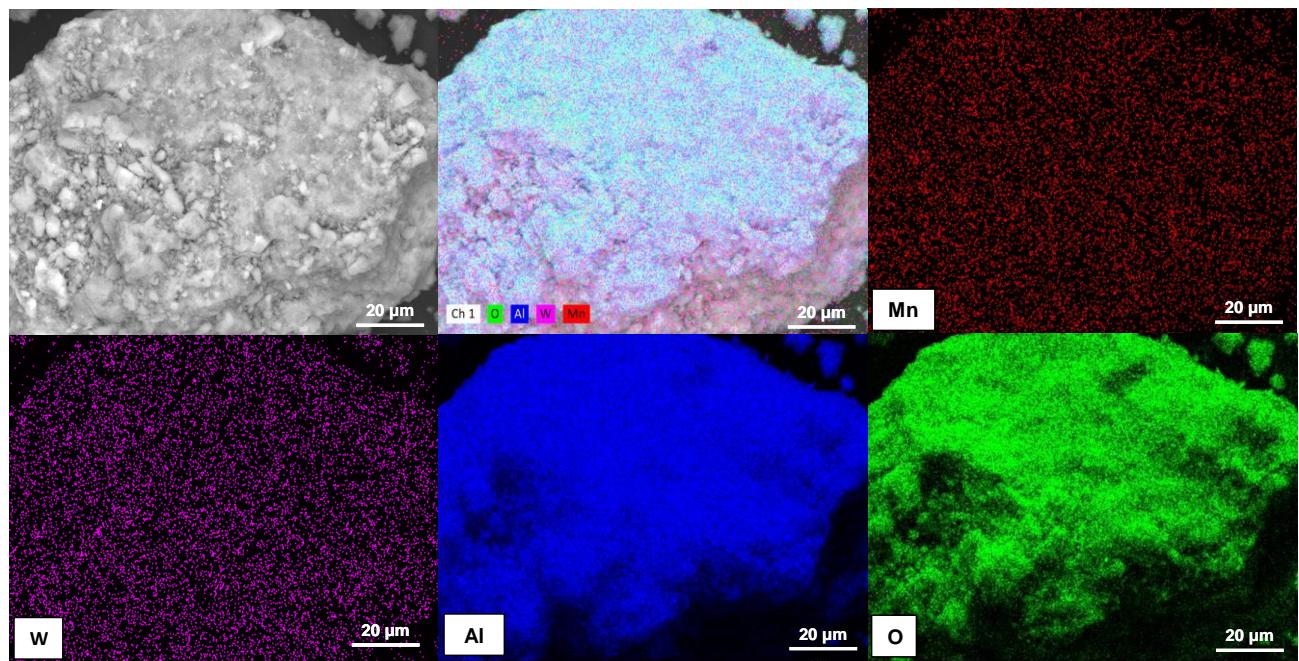
A sample containing 8 wt.% W was prepared by incipient wetness impregnation γ-Al₂O₃ ("Sasol", S_{BET} = 76 m² g⁻¹) with an aqueous solution of (NH₄)₆W₁₂O₃₉·H₂O, (Aldrich). A 1% Mn/Al₂O₃ sample was prepared by impregnation with an aqueous solution of Mn(NO₃)₂·4H₂O (≥97%, Sigma Aldrich, USA). A 1% Mn8%W/Al₂O₃ sample was prepared by additional impregnation of a monolayer 8%W/Al₂O₃ with an aqueous solution of Mn(NO₃)₂·4H₂O (≥97%, Sigma Aldrich, USA). After impregnation, the samples were dried at room temperature and then calcined for 2 hours at 550°C.

Catalyst characterization

Temperature-programmed reduction (H₂-TPR). The catalysts were studied by temperature-programmed reduction by hydrogen on an USGA-101 semiautomatic flow setup (Unisit LLC, Russia) equipped with a catharometer calibrated against the reduction of NiO (99.99%, Sigma—Aldrich, USA). An U-shaped quartz reactor with a chromel—alumel thermocouple was loaded with a weighed sample of the catalyst (0.3 g). The sample was preliminarily purged with argon (99.999%, Linde Gas Rus PLC, Russia; flow rate 30 mL min⁻¹) on heating from room temperature to 150°C at a rate of 10°C min⁻¹ and then allowed to stay at a specified temperature for 1 h. Then, the sample was cooled in Ar flow to 50°C and kept at a preset temperature in a 5%H₂/Ar stream (Linde Gas Rus PLC, Russia) (30 mL min⁻¹) until a stable baseline emerged (~20–30 min). The catalyst sample was reduced in a 5%H₂/Ar flow (30 mL min⁻¹) on heating to 650°C at a rate of 10°C min⁻¹. To remove water vapor formed during the reduction reaction, a trap cooled to a temperature of –20°C with a Peltier element was placed between the reactor and the catharometer.


Scanning electron microscopy (SEM-EDS) The surface morphology of catalysts was characterized using SU8000 (Hitachi, Tokyo, Japan) field-emission scanning electron microscope (FE-SEM). Before measurements the samples were mounted on a 25 mm aluminum specimen stub and fixed by conductive graphite adhesive tape. Qualitative and quantitative analysis of catalyst elements were carried out using energy dispersive X-ray spectroscopy (EDS) on Oxford Instruments X-max 80 EDS system with 15 kV accelerating voltage.

Catalytic tests


Catalytic performance of samples in ozone decomposition and ozone catalytic oxidation of *n*-C₄H₁₀ (OZCO) was studied using fixed-bed flow quartz reactor (id=10mm) operating at atmospheric pressure (Fig S1). The composition of the feed gas contains 100 ppm *n*-C₄H₁₀, 1600 ppm O₃, 10 vol. % O₂, balanced with N₂. Ozone was obtained using a Med ozone YOTA-60-01 ozone generator (Med ozone, Russia). Total flow rate was fixed at 750 mL/min (GHSV = 150 000 h⁻¹). The temperature was ranged from RT to 350°C at a heating rate of 5°C/min. Ozone content at the inlet and outlet of the reactor was measured by ozone analyzer Med ozone 254/5 (Med ozone, Russia). Reaction products were analyzed by FTIR gas analyzer “Gasmet” (Temet Instruments DX-4000). The conversion of *n*-C₄H₁₀, was calculated using the follow equation:

$$X = \frac{C_{in} - C_{out}}{C_{in}} \times 100\%$$

where subscripts *in* and *out* are the inlet and outlet concentrations, respectively.

Figure S1. Experimental setup

Figure S2. Surface morphology and EDS of 1% Mn8%W/Al₂O₃