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Moving of the tetramethylbutanediyl substituent
over the catecholcarbaldehyde core

Maxim A. Zherebtsov, Natalia D. Anisimova, Anastasiya E. Tarakanova,
Maxim V. Arsenyev and Sergey A. Chesnokov

Chemical experimental details

The solvents were purified following standard methods.5* *H and 3C NMR spectra were recorded
in CDCIs on Bruker Avance DPX-300 (300 MHz) instrument. The Fourier Transform infrared
spectra of the compounds in the 4000-400 cm™ range were recorded on a Specord M-80 in Nujol.
Quantum-chemical calculations of compounds 1 and 2 with optimization of the geometry of
isolated molecules were carried out by the DFT method implemented in the Gaussian 0952 software
package, using the B3LYPS®5* hybrid functional and the 6-31+G(d,p) basis set of H>%¢ and C, N,
05”8 atoms. The melting point of organic compounds was measured using an M5000 automatic

melting point meter.

3,4-Dihydroxy-5,5,8,8-tetramethyl-5,6,7,8-tetrahydronaphthalene-2-carbaldehyde (2)

OH

OH

Yo

Compound 1 (0.1 g, 0.4 mmol) was stirred in methanesulfonic acid (2 ml) at room temperature for
24 h. The reaction mixture was poured onto ice and the resulting precipitate was filtered and dried.
A dark yellow powder was isolated. Yield 0.09 g (90%). M. p. 100.2 °C. Calc. for C1sH2003 (%): C,
72.55; H, 8.12. Found (%): C, 72.52; H, 8.09. 'H NMR (300 MHz, CDCls) &: 1.29 (s, 6H, CHs),
1.45 (s, 6H, CH3), 1.62-1.65 (m, 2H, CH>), 1.68-1.71 (m, 2H, CH2), 5.90 (s, 1H, OH), 7.11 (s, 1H,
Car-H), 9.81 (s, 1H, C-H), 10.75 (s, 1H, OH). 3C NMR (300 MHz, CDCls) §: 27.57, 32.09, 34.17,
34.86, 35.21, 37.25, 118.38, 121.83, 139.05, 139.60, 143.04, 145.09, 196.43. IR (Nujol, v/em™):
3400 (w), 1731 (s), 1651 (w), 1572 (m), 1343 (s), 1329 (s), 1306 (s), 1285 (s), 1252 (s), 1221 (s),
1200 (s), 1130 (m), 1086 (s), 1067 (m), 1053 (m), 1024 (s), 1003 (m), 939 (m), 889 (m), 872 (w),
796 (w), 779 (w), 735 (m), 613 (m), 590 (m).
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5,5,8,8-Tetramethyl-5,6,7,8-tetrahydronaphthalene-1,2-dione (5)

O
(0]

Compound 5 (1 g, 4.9 mmol) was stirred with IBX (1.37 g, 4.9 mmol) in a chloroform-methanol
(3:2) solvent mixture at room temperature for 2 h. The reaction mixture was washed three times (20
ml each) with soda solution and once with water, then the organic layer was dried over sodium
sulfate. After removing the solvent under reduced pressure, a red oily substance was obtained. The
target product was isolated by thin-layer chromatography using dichloromethane as an eluent. Red
crystals were isolated. Yield 0.37 g (62%). M. p. 116.3 °C. Calc. for C14H1802 (%): C, 77.03; H,
8.31. Found (%): C, 77.52; H, 8.42. *H NMR (300 MHz, CDCls) &: 1.17 (s, 6H, CH3), 1.25 (s, 6H,
CHj3), 1.49-1.52 (m, 2H, CH), 1.57-1.60 (m, 2H, CH2), 6.30 (d, 1H, J = 10.4 Hz, C¢-H), 7.11 (d,
1H, J = 10.4 Hz, Cq-H). $3C NMR (300 MHz, CDCls) &: 27.26, 28.00, 34.09, 34.48, 35.29, 36.39,
127.92, 142.12, 143.98, 153.50, 180.13, 180.56. IR (Nujol, v/cm™): 1681 (s), 1656 (s), 1614 (s),
1551 (s), 1410 (s), 1391 (s), 1311 (s), 1290 (s), 1245 (s), 1199 (s), 1180 (s), 1085 (m), 1049 (s),
1010 (s), 930 (s), 895 (m), 877 (s), 844 (s), 797 (s), 774 (m), 626 (s), 580 (M), 547 (w), 498 (W).

5,5,8,8-Tetramethyl-5,6,7,8-tetrahydronaphthalene-1,2-diol (3")

OH
OH

Compound 5' (0.37 g, 1.7 mmol) was stirred with hydrazine hydrate (0.43 g, 8.5 mmol) in methanol
at room temperature for 3 h. Water (20 ml) was added to the reaction mixture and a precipitate
formed, which was filtered and dried. A light-yellow powder was isolated. Yield 0.26 g (70%). M.
p. 127.6 °C. Calc. for C14H2002 (%): C, 76.33; H, 9.15. Found (%): C, 76.25; H, 9.43. *H NMR
(300 MHz, CDClg) 6: 1.24 (s, 6H, CH3), 1.43 (s, 6H, CH3), 1.59-1.62 (m, 2H, CH>), 1.66-1.68 (m,
2H, CHy), 4.54 (s, 1H, OH), 6.67 (d, 1H, J = 8.4 Hz, Ca-H), 6.75 (d, 1H, J = 8.4 Hz, Ca-H). *C
NMR (300 MHz, CDCls) &: 28.15, 32.09, 34.16, 34.33, 35.27, 37.69, 112.73, 117.70, 139.59,
140.63, 143.39, 144.87. IR (Nujol, v/em™): 3499 (m), 3360 (m), 1617 (w), 1603 (w), 1586 (w),
1574 (w), 1304 (m), 1271 (m), 1229 (s), 1198 (s), 1117 (m), 1084 (s), 1057 (s), 1013 (m), 999 (m),
932 (m), 903 (m), 887 (s), 806 (w), 781 (m), 694 (s), 675 (S), 659 (s), 565 (S).
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Figure S1. The *H NMR spectrum of 2 (CDCls).
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Figure S2. The 3C NMR spectrum of 2 (CDCls).
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Figure S3. The H NMR spectrum of 5' (CDCls).
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Figure S4. The 3C NMR spectrum of 5" (CDCls).
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Figure S6. The *3C NMR spectrum of 3' (CDCls).
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Figure S8. The *H NMR spectrum (CDCIs) of a mixture of compounds 2 and 3 (HBr, 70 °C).
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Figure S10. The *H NMR spectrum (CDCls3) of a mixture of compounds 2 and 3 (H2S04, 70 °C).
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Figure S11. The *H NMR spectrum (CDCIs) of a mixture of compounds 2 and 3 (HCIO4, 70 °C).
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Figure S13. The *H NMR spectrum (CDClIs) of a mixture of compounds 2 and 3 (MsOH, rt).
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Figure S14. The *H NMR spectrum of a mixture of compounds 5' and 5 (CDCls).
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Figure S16. The 'H NMR spectrum of a mixture of compounds 1 and 2 (CDCls).
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