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C,N-Palladacycle based on N,N-dimethyl-N-(diphenylmethyl)amine
as an effective phosphine-free (pre)catalyst
for the Suzuki—Miyaura cross-coupling

Margarita P. Timerkaeva, Konstantin A. Kochetkov and Olga N. Gorunova

Materials and methods

NMR spectra were recorded on an Agilent 300-MR spectrometer with an operating
frequency of 300.0 MHz (for *H nuclei) in CDCls at 20 °C. Chemical shifts are given relative to
the residual signals of CDCIsz (5 7.26 for *H nuclei). The reactions were carried out without
protection from light, moisture, and atmospheric oxygen. The reaction was monitored by TLC on
Merck F-254 plates with UV detection. All reagents and solvents utilized in the experimental
procedures were procured from commercial suppliers and were of analytical grade, used without
the need for additional purification or drying. The particle size study was carried out with the
particle analyzer Malvern Zeta-Sizer Ultra (Malvern Instruments Ltd., UK) by the dynamic light
scattering method (DLS). Relaxation time distribution functions and hydrodynamic radii were
calculated using the analysis package CONTIN data. All the DLS experiments were held under
scattering angles from 40 to 150°.

Synthesis of the di-p-chloro-bis[2-{1'-(dimethylamino)benzyl}phenylC,N]dipalladium(ll)
11 was carried out according to the procedure reported previously [S1].
Preparation of a catalyst solution of a given concentration.
To a (pre)catalyst 11 (8.02x10-3 mmol) placed into a graduated flask (10 mL), dichloromethane
was added. An aliquot of this solution in 1 mL contained 8.02x10* mmol of catalyst, which
corresponded to 1 mol% [Pd]. If necessary, additional dilutions were performed to obtain the
appropriate amount of catalyst in 1.0 ml of solvent. Then, the necessary amount of the catalyst
solution in dichloromethane was transferred to a reaction vessel, and the solvent was removed.
The Suzuki—Miyaura reaction catalyzed by palladacycle 11 (general procedure).
A mixture of both corresponding arylboronic acid (13a-g) (1.5 eq., 0.240 mmol) and aryl
bromide (12a-i) or aryl chloride (12j-1) (1 eq., 0.160 mmol), KF (5 eq., 0.802 mmol, 46.6 mg),
and dimeric (pre)catalyst 11 (8.02x10° or 8.02x10~* mmol, 0.056 mg or 0.56 mg to obtain 0.1 or
1 mol% [Pd], respectively) in MeOH (1 mL) was stirred at a specified temperature for a
specified time in air. The mixture was evaporated to dryness, and CH2Cl2 (10 mL) was added to
the residue. The resulting solution was washed with water (3x5 mL). The filtrate was dried over

MgSOQO4 and evaporated to dryness at reduced pressure (1 Torr). The resultant residue obtained
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was purified using column chromatography in a hexane/CH2Cl2 solvent system (the gradient is
from 10:1 to 1:1) to afford the desired products. The *H NMR chemical shifts are consistent with
previously reported literature data [S2-S3].

4-Methoxybiphenyl (14a, 92%): *"H NMR (300 MHz, CDCls) 6 3.88 (s, 3H), 7.01 (d, J = 8.7 Hz,
2H), 7.33 (t, J = 7.2 Hz, 1H), 7.44 (t, J = 7.2 Hz, 2H), 7.53-7.61 (m, 4H). [S2]

4-Methylbiphenyl (14b, 96% in reaction with aryl bromide and 92% in reaction with aryl
chloride): *H NMR (300 MHz, CDCls) § 7.61 (d, J = 8.1 Hz, 2H), 7.53 (d, J = 8.1 Hz, 2H), 7.46
(d, J = 7.1 Hz, 2H), 7.35 (m, 1H), 7.28 (d, J = 7.9 Hz, 2H), 2.44 (s, 3H). [S3]

4-Acetylbiphenyl (14c, 94% in reaction with aryl bromide and 85% in reaction with aryl
chloride): *H NMR (300 MHz, CDClz) 6 8.05 (d, J = 8.7 Hz, 2H), 7.62-7.73 (m, J = 8.1 Hz, 4H),
7.52-7.42 (m, 3H), 2.66 (s, 3H). [S2]

4-Cyanobiphenyl (14d, 98%): *H NMR (300 MHz, CDCls) § 7.42-7.55 (m, 3H), 7.61 (d, J= 7.4
Hz, 2H), 7.69-7.77 (m, 4H). [S3]

4-Nitrobiphenyl (14e, 71%): *H NMR (300 MHz, CDCls) 6 7.44-7.57 (m, 3H), 7.65 (d, J = 7 Hz,
2H), 7.76 (d, J = 8.6 Hz, 2H), 8.32 (d, J = 8.4 Hz, 2H). [S2]

Ethyl 4-phenylbenzoate (14f, 98%): *H NMR (300 MHz, CDCls) § 8.14 (d, J = 8.8 Hz, 2H),
7.71-7.62 (m, 4H), 7.47 (t, J = 7.6 Hz, 2H), 7.41 (t, J = 7.6 Hz, 1H), 4.43 (q, J = 7.2 Hz, 2H),
1.44 (t, J=7.2 Hz, 3H). [S4]

2-Methoxybiphenyl (14g, 90%): *H NMR (300 MHz, CDCIs) 6 7.56 (m, 2H), 7.44 (ddd, J = 8.1,
6.6, 1.5 Hz, 2H), 7.39-7.31 (m, 3H), 7.10-6.98 (m, 2H), 3.84 (s, 3H). [S3]

2-Formylbiphenyl (14h, 90%): *H NMR (300 MHz, CDCIls) 6 10.01 (s, 1H), 8.05 (d, J = 7.8 Hz,
1H), 7.66 (t, J = 7.5 Hz, 1H), 7.43-7.56 (m, 5H), 7.40 (d, J = 7.6 Hz, 2H). [S5]

3-Methylbiphenyl (14i, 97%): *H NMR (300 MHz, CDCls) 6 7.62 (m, 2H), 7.32-7.51 (m, 6H),
7.20 (d, J = 7.6 Hz, 1H), 2.46 (s, 3H). [S6]

Methyl 4-phenylbenzoate (14j, 90%): *H NMR (300 MHz, CDCls) 6 8.13 (d, 2H), 7.70-7.62 (m,
4H), 7.39-7.52 (m, 3H), 3.94 (s, 3H). [S2]

1-(4'-Methyl-[1,1'-biphenyl]-4-yl)ethan-1-one (14k, 98%): 'H NMR (300 MHz, CDCls) ¢ 8.04
(d, J = 8.8 Hz, 2H), 7.69 (d, J = 8.8 Hz, 2H), 7.55 (d, J = 8.0 Hz, 2H), 7.30 (d, J = 8.0 Hz, 2H),
2.66 (s, 3H, COCHg), 2.43 (s, 3H, CH3). [S7]

1-(4'-Methoxy-[1,1'-biphenyl]-4-yl)ethan-1-one (141, 97%): *H NMR (300 MHz, CDCls) § 8.03
(d, J=8.4 Hz, 2H; ArH), 7.66 (d, J = 8.5 Hz, 2H; ArH), 7.59 (d, J = 8.8 Hz, 2H; ArH), 7.02 (d, J
= 8.8 Hz, 2H; ArH), 3.88 (s, 3H; OCHBs), 2.65 (s, 3H; COCHs3). [S8]
1-(4'-Bromo-[1,1'-biphenyl]-4-yl)ethan-1-one (14m, 90%): 'H NMR (300 MHz, CDCIs) ¢ 8.05
(d, J =8.3 Hz, 2H), 7.67 (d, J = 8.2 Hz, 2H), 7.62 (d, J = 8.4 Hz, 2H), 7.51 (d, J = 8.4 Hz, 2H),
2.66 (s, 3H; COCHpg). [S8]
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1-(4'-Chloro-[1,1'-biphenyl]-4-yl)ethan-1-one (14n, 93%): *H NMR (300 MHz, CDCls): ¢ 8.05
(d, J =8.2 Hz, 2H), 7.67 (d, J = 8.2 Hz, 2H), 7.58 (d, J = 8.4 Hz, 2H), 7.46 (d, J = 8.4 Hz, 2H),
2.66 (s, 3H; COCHpg). [S8]

1-(1,1:4' 1"-Terphenyl)-4-ylethan-1-one (140, 89%): *H NMR (300 MHz, CDCl3) ¢ 8.07 (d, J =
8.2 Hz, 2H), 7.78-7.68 (m, 6H), 7.65 (d, 2H), 7.49 (t, J = 7.5 Hz, 2H), 7.41 (t, J = 7.2 Hz, 1H),
2.67 (s, 3H; COCHpg). [S9]

1-(4-Acetylphenyl)naphthalene (14p, 98%): *H NMR (300 MHz, CDCl3) § 8.12 (d, J = 8.3 Hz,
2H), 7.94 (t, J = 8.2 Hz, 2H), 7.87 (d, J = 8.3 Hz, 1H), 7.63 (m, 2H), 7.60 - 7.42 (m, 4H), 2.72 (s,
3H). [S9]

Procedure for Carbon Disulfide (CS;) Poisoning Study.

A solution of (pre)catalyst 11 (8.02x10~° mmol, 0.056 mg, 0.1 mol% [Pd]) in MeOH (1.0 mL)

was stirred for 5 min at ambient temperature. Thereafter, phenylboronic acid (13) (1.5 eq., 0.240

mmol, 29.3 mg), 4-bromoacetophenone (12c) (1 eq., 0.160 mmol, 31.8 mg) was added along
with KF (5 eq., 0.802 mmol, 46.6 mg). Carbon disulfide (CSz) (2 eq., 0.320 mmol, 0.019 mL)
was then added (at the start of the reaction), and the reaction mixture was stirred at ambient
temperature for 3 h. On completion of the stipulated time, a TLC analysis of the reaction mixture
revealed no progress in the reaction, thus suggesting complete inhibition of the catalytic reaction.
General procedure for Tetrabutylammonium bromide (TBAB) Study.

A solution of (pre)catalyst 11 (8.02x10~° mmol, 0.056 mg, 0.1 mol% [Pd]) in MeOH (1.0 mL)
was stirred for 5 min at ambient temperature. Thereafter, phenylboronic acid (13) (1.5 eq., 0.240
mmol, 29.3 mg), 4-bromoacetophenone (12c) (1 eg., 0.160 mmol, 31.8 mg) was added along
with KF (5 eq., 0.802 mmol, 46.6 mg). TBAB (1 eg., 0.160 mmol, 51.6 mg or 0.1 eq., 0.016
mmol, 5.16 mg) was added to the reaction mixture and the resulting solution was then stirred at
ambient temperature for 3.0 h. On completion of the stipulated time the mixture was evaporated
to dryness, and CH2Cl2 (10 mL) was added to the residue. The resulting solution was washed
with water (3x5 mL). The filtrate was dried over MgSO4 and evaporated to dryness at reduced
pressure (1 Torr). The sample were then dissolved in CDClIs and transferred to NMR ampoules.
Conversion was determined by *H NMR spectroscopy.

Procedure for Polyvinylpyrrolidone (PVP) Study.

A solution of (pre)catalyst 11 (8.02x10~°> mmol, 0.056 mg, 0.1 mol% [Pd]) in MeOH (1.0 mL)
was stirred for 5 min at ambient temperature. Thereafter, phenylboronic acid (13) (1.5 eq., 0.240
mmol, 29.3 mg), 4-bromoacetophenone (12c) (1 eq., 0.160 mmol, 31.8 mg) was added along
with KF (5 eg., 0.802 mmol, 46.6 mg). PVP (M = 10 000, 0.1 eqg., 0.016 mmol, 160 mg) was

added to the reaction mixture and the resulting solution was then stirred at ambient temperature
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for 3.0 h. On completion of the stipulated time the mixture was evaporated to dryness, and
CH2Cl2 (10 mL) was added to the residue. The resulting solution was washed with water (3x5
mL). The filtrate was dried over MgSOa4 and evaporated to dryness at reduced pressure (1 Torr).
The sample were then dissolved in CDClIs and transferred to NMR ampoules. Conversion was
determined by *H NMR spectroscopy.
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Table S1 Comparison of the effectiveness in the Suzuki-Miyaura reaction of 4-
bromoacetophenone with PhB(OH): palladacycle 11 from this article with the catalytic activity
of known phosphine-free palladacycles.
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Figure S3 'H NMR spectrum of 4-methoxybiphenyl (14a).
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Figure S9 'H NMR spectrum of 2-methoxybiphenyl (14g).
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Figure S10 *H NMR spectrum of 2-formylbiphenyl (14h).
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