
Focus Article, Mendeleev Commun., 2025, 35, 503–511

–  503  –© 2025 Mendeleev Communications

Keywords: 12,13-dihydro[1,2,5]thiadiazolo[3,4-e]thieno[2'',3'':4',5']thieno[2',3':4,5]pyrrolo[3,2-g]thieno[2',3':4,5]thieno[3,2-b]indole, 
benzo[c][1,2,5]thiadiazoles, thieno[2',3':4,5]thieno[3,2-b]pyrroles, (inden-1-ylidene)malononitriles, chemical reactivity, heterocycles, 
heterocyclic synthesis, non-fullerene acceptors, organic bulk heterojunction solar cells.

Introduction
Among alternative energy sources, solar energy is the most 
promising, as it has inexhaustible (at least for the next billion 
years) potential and maximum power. Silicon thin-film elements 
are leaders in the world market: their share reached about 80% of 
the sales volume of solar cells. However, organic solar cells, 
which began to be obtained in the mid-1980s, have a number of 
advantages over silicon batteries.1–3 The production of organic 
photovoltaic devices is cheaper and much simpler. The ability of 
organic photovoltaic materials to form nanocomposites allows 
achieving the required morphology of the active layer and greater 
adaptability to the shape and dimensions of the photovoltaic 

device. No less important is the relative ease with which the 
structure and chemical composition of organic compounds can be 
changed, which allows for targeted optimization of their 
properties depending on the specific application of the final 
material. One of the most efficient technologies of organic solar 
cells is bulk heterojunction cells, in which donor and acceptor 
fragments are located in the same photoactive layer. As a rule, 
polymeric materials act as donors, and at an early stage, fullerene 
derivatives acted as acceptors. Recently, the development of 
replacing fullerene and its derivatives with high-performance 
non-fullerene acceptors (NFA) has dramatically increased the 
power conversion efficiency of a single cell by more than 19%.4–6
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Organic solar cells have attracted much attention nowadays 
due to their great advantages such as lightweight, mechanical 
flexibility, semitransparency, and indoor applicability as 
next generation renewable energy devices. The most 
promising types of organic solar cells at the moment are cells 
with a bulk heterojunction, in which the key components are 
non-fullerene acceptors. The title building block, more 
strictly named as 12,13-dihydro[1,2,5]thiadiazolo[3,4-e]
th ieno[2'',3'' :4',5' ] th ieno[2' ,3' :4 ,5]pyrrolo[3 ,2-g ]
thieno[2',3':4,5]thieno[3,2-b]indole, is most commonly used 
in the design of non-fullerene acceptors in organic bulk 
heterojunction solar cells. This review presents data on the 
synthesis of this polycycle and its transformations into 
organic functional materials including components of highly 
efficient solar cells.
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This success was achieved in 2019 by obtaining one of the 
key compounds, 2,2'-{(2Z,2'Z)-[(12,13-bis(2-ethylhexyl)-3,9-
diundecyl-12,13-dihydro[1,2,5]thiadiazolo[3,4-e]thieno- 
[2'',3'':4',5']thieno[2',3':4,5]pyrrolo[3,2-g]thieno[2',3':4,5]
thieno[3,2-b]indole-2,10-diyl)bis(methaneylylidene)]- 
bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene)}
dimalononitrile (Y6), which had such unique properties as 
dominant face-on orientation, high electron mobility, and low 
energy loss with high electroluminescent quantum efficiency 
(Figure 1).7 The Y6 molecule has an acceptor–donor–acceptor 
(A–D–A) structure in which moiety of benzo[c][1,2,5]thia
diazole doubly fused with thieno[2',3' :4,5]thieno[3,2-b]- 
pyrroles (namely, 12,13-dihydro[1,2,5]thiadiazolo[3,4-e]thieno- 
[2'',3'':4',5']thieno[2',3':4,5]pyrrolo[3,2-g]thieno[2',3':4,5]
thieno[3,2-b]indole, DTPI) acts as the donor component, and 
2-(5,6-difluoro-3-oxo-2,3-dihydro-1H-inden-1-ylidene)
malononitrile parts serve as electron-withdrawing end-
fragments; the alkyl substituents in the core are solubilizing 
groups. The physical parameters of solar cells have been 
discussed in detail in a number of reviews,8–11 while there are no 
reviews in the literature devoted to the synthetic capabilities of 
the DTPI fragment. This review should fill this gap.

Synthesis of DTPI core
The strategy for the synthesis of 10,11-dihydro[1,2,5]
thiadiazolo[3,4-e]thieno[2',3':4,5]pyrrolo[3,2-g]thieno[3,2-b]
indole 1 starting from 4,7-dibromo-5,6-dinitrobenzo[c][1,2,5]- 
thiadiazole was first proposed by Hsu in 2011.12 It was Stille-
coupled with tributyl(thiophen-2-yl)stannane to yield 5,6-dinitro-
4,7-di(thiophen-2-yl)benzo[c][1,2,5]thiadiazole 2. Its double 
intramolecular Cadogan reductive cyclization13,14 in the presence 

of P(OEt)3 successfully furnished the fused polycycle 1 in 61% 
yield whose final alkylation gave dialkyl derivative 3 (Scheme 1). 
Later Nakamura showed that PPh3 could be successfully used in 
the Cadogan cyclization step affording polycycle 1 in near to 
quantitative yield (97%).15

This method was successfully applied to the synthesis of 
DTPI 4 and its 3,9-dialkyl derivatives. Tributyl(thieno[3,2-b]
thiophen-2-yl)stannane16,17 and its 5-alkyl derivatives were used 
as the thiophene arylating agents, and P(OEt)3

18–21 or PPh3
22–26 

were used as the cyclizing agents (Scheme 2). Final alkylation at 
the nitrogen atom of the pyrrole ring completes the formation of 
the DTPI core 4.

Reactions of DTPI at positions 2 and 8
The most frequently studied reaction for this heterocyclic 
system is the Vilsmeier–Haack formylation followed by the 
Knoevenagel reaction with 2-(3-oxo-2,3-dihydro-1H-inden-1-
ylidene)malononitriles (Scheme 3). The standard formylation 
includes treatment of DTPI with the DMF/POCl3 system at 
80–85 °C for several hours.19,27 Compound 5, precursor of 
NFA Y6, can be alternatively prepared by the unusual reaction 
with BunLi and DMF at room temperature.7 Knoevenagel 
reaction was performed in the presence of pyridine in CHCl3 at 
room temperature28–30 or by heating at 65 °C.7,19,27 Compound 
Y6 [R1 = C11H23, R2 = 3,4-F2, Alk = CH2CH(Et)Bu],7 the first 
and the most studied among the NFAs 6 for organic bulk 
heterojunction solar cells was synthesized in this way (see 
Scheme 3).

The synthesis of Y6 analogs containing non-symmetrical 
(oxodihydroindenylidene)malononitrile side groups was 
achieved by treatment of diformyl derivatives 5 with subsequent 
addition of 2-(3-oxo-2,3-dihydro-1H-inden-1-ylidene)malono
nitrile or its 5-bromo derivative in the presence of pyridine in 
CHCl3 at room temperature (Scheme 4).31 The compounds 
obtained were employed further to undergo dimerization under 
the Stille–Kelly conditions with Pd(PPh3)Cl2 as catalyst and 
Me6Sn2 as reducing agent to give Y6 dimeric products 7 in 
moderate yields (44–66%). Under the same conditions 
condensation of dibromo non-fullerene acceptor 6'b with 
monobromo derivative 6a afforded trimeric Y6 analogs, while 
self-condensation of dibromide 6'c gave polymeric NFA in high 
yield (91%). To enhance a solubility of NFA, a series of 

N
S

N

NN

SS

SS

Et

Bu

Et

Bu

O O

F

F

F

F

CNNC NC CN

RR

Y6
R = C11H23

Figure  1  The structure of non-fullerene acceptor Y6.
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copolymers were synthesized by the Stille cross-coupling 
polymerization of brominated Y6 acceptor 6'd (R = Br) with 
2,5-bis(trimethylstannyl)thiophene and ethyl 2,5-dibromo
thiophene-3-carboxylate.32 

Lin succeeded in synthesizing a non-symmetrical Y6 analog 
of D–D–A type by replacing one acceptor terminal dicyano
methylenindene group with a donor tetraphenylethylene group 
by monoformylation of the starting ring in DTPI followed by 
bromination with NBS. The final Suzuki and Knoevenagel 
reactions carried out under standard conditions gave 
unsymmetrical non-fullerene acceptor 8 in moderate yield 
(Scheme 5).33 

Diformyl DTPI derivative 5 was used to increase 
conjugation  with the diene system. For this purpose, the 

Wittig  oxopropenylation with tributyl(1,3-dioxolan-2-
ylmethyl)phosphonium bromide in the presence of NaH in 
THF was used to access novel bis-acrolein derivative 9. 
Dialdehyde 9 was subjected to the Knoevenagel reaction 
with  the indanone counterpart under unusual conditions 
(Ac2O/BF3 · Et2O system) to give compound 10 being the NFA 
Y6 vinylog (Scheme 6).34

Another possibility for introducing an acceptor fragment into 
a-positions of anchoring thiophene rings in DTPI 4 is their 
stannylation. Bis(trimethylstannyl) derivative 11 was obtained 
by the reaction of DTPI 4 (R = H) with lithium diisoprorylamide 
and Me3SnCl. The Stille coupling with 4-iodoperylene or 
isomeric 5-bromoperylene produced target NFA 12 in moderate 
yield (Scheme 7).35 
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Donor fragments can be introduced into positions 2 and 10 of 
DTPI 4 by the bromination reaction followed by replacement of 
the bromine atoms for triarylamine residues employing the Stille 
coupling (Scheme 8).36

The unique quinonoid structure 13 with enhanced p-electron 
delocalization and bond lenght uniformity was synthesized from 
dibromo DTPI by coupling with malononitrile followed by DDQ 
oxidation (Scheme 9).37

Transformations of the [1,2,5]thiadiazole ring in DTPI
Several types of transformation of the [1,2,5]thiadiazole ring 
with the formation of valuable intermediates, diamino and diketo 
derivatives, are known. The reduction is usually carried out with 
LiAlH4 in THF, and the resulting diamine 14 is introduced into 
the next reaction without isolation. Pyrazine derivatives 15 are 
most often obtained by reaction of diamine 14 with the 
corresponding diketones in EtOH or CHCl3 (Scheme 10).38–42

Much attention has been given to the synthesis of fused 
pyrazines from DTPI 4 through intermediate 11,12-dialkyl
thieno[2'',3'':4',5']thieno[2',3':4,5]pyrrolo[3,2-g]thieno- 

[2',3':4,5]thieno[3,2-b]indole-5,6(11H,12H)-dione 17.43–49 Y. Chen 
proposed an interesting method for converting the thiadiazole 
ring into a pyrazine one.43 The first step involves reducing the 
1,2,5-thiadiazole in DTPI 4 to diamine 14, which is then oxidized 
with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), 
presumably to the corresponding diimine 16. The latter reacts 
in  situ with o-arylenediamines under unexpectedly mild 
conditions (6 h at room temperature) to form pyrazine 15 
(Scheme 11).43–47 Y. Chen showed that pyrazine 15 could be 
obtained by more rational method converting diimine 16 into 
diketone 17 by hydrolysis in HCl, followed by heating with 
o-arylenediamines in AcOH.48,49 However, the yields in this case 
are not higher, and the procedure for obtaining pyrazine 15 is 
longer.

Imidazole derivatives 18a,b can be obtained in the reaction of 
diamine 14 with CF3CO2H or by direct reduction of DTPI 4 with 
Zn in AcOH with subsequent cyclization (Scheme 12).50 

Selenium analogs of DTPI
The selenium analogs of DTPI are much less studied. They can 
contain selenium atoms both in the central electron-accepting 
core and in five-membered selenophene rings on the periphery. 
The selenium analog of DTPI 19 can be prepared by two 
methods: from 4,7-dibromo-5,6-dinitrobenzo[c][1,2,5]selena
diazole 20 via the Cadogan reaction51–53 or by reduction of DTPI 
4 with LiAlH4 to diamine 14 followed by cyclization to 
1,2,5-selenadiazole derivatives 19 in the reaction with SeO2 in a 
mixture of EtOH/H2O (Scheme 13).54 The yield in the latter case 
is much lower, which may be due to insufficiently thorough 
development of the conditions for cyclization of the 
1,2,5-selenadiazole ring.55

Two isomeric analogs of DTPI 21 and 22 were prepared by 
a  well-established strategy in the reaction of 4,7-dibromo- 
5,6-dinitrobenzo[c][1,2,5]thiadiazole with trimethyl(5-alkyl
selenopheno[3,2-b]thiophen-2-yl)stannanes18,56–59 or trimethyl
(2-a lkylse lenopheno[3 ,2-b] th iophen-5-yl )s tannanes 
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(Figure 2).51 Non-symmetrical DTPI 23 was obtained by 
sequential reaction of 4,7-dibromo-5,6-dinitrobenzo[c][1,2,5]- 
thiadiazole with tributyl(6-undecylthieno[3,2-b]thiophen-2-yl)

stannane and tributyl(5-undecylselenopheno[3,2-b]thiophen- 
2-yl)stannane followed by double intramolecular Cadogan 
reductive cyclization in the presence of P(OEt)3 in 1,2-di
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chlorobenzene.60 All-selenium DTPI 24 was also prepared 
starting from 4,7-dibromo-5,6-dinitrobenzo[c][1,2,5]selena
diazole 20 and tributyl(5-undecylselenopheno[3,2-b]selenophen-
2-yl)stannane.61

Applications of DTPI in the materials construction
In 2019, Zou reported on the preparation of a promising NFA Y6 
molecule with a unique electron-deficient polycyclic center, 
which provided not only the traditional terminal–terminal 
stacking but also the center–terminal stacking between acceptor 
molecules, thereby forming a unique three-dimensional 
interpenetrating network to effectively enhance the exciton 
diffusion length and carrier transport efficiency.7 The presence 
of side chains effectively tuned the crystallinity and increased 
the solubility of Y6 molecules, and the introduction of 
2-(5,6-difluoro-3-oxo-2,3-dihydro-1H-inden-1-ylidene)
malononitrile helped to reduce the LUMO energy level of the 
molecules and to significantly extend the absorption range to 
930 nm. Even though the donor material (PM6, poly[[4,8-bis[5-
(2-ethylhexyl)-4-fluoro-2-thienyl]benzo[1,2-b:4,5-b']
dithiophene-2,6-diyl]-2,5-thiophenediyl-[5,7-bis(2-ethylhexyl)-
4,8-dioxo-4H,8H-benzo[1,2-c:4,5-c']dithiophene-1,3-diyl]- 
2,5-thiophenediyl]) was not optimally selected, the device 
efficiency of PM6:Y6-based OPV reached 15.7%. By optimizing 
the alkyl chain of the Y6 molecule, Hou was able to construct a 
single-junction organic photovoltaic device with an efficiency 
approaching 18% in 2020.28 Further numerous attempts to 
optimize the Y6 molecule by increasing conjugation in the 
central polycycle, introducing halogen atoms, and using more 
suitable donor components in solar cells made it possible to 
increase the photovoltaic efficiency of single-junction devices to 
19%,43,62–64 and ternary devices to more than 19.5%.65–67 

Compounds containing DTPI heterocyclic system have been 
studied as non-doped hole transporting materials in perovskite 
solar cells.36,68 Efficient high-speed near-infrared organic 
photodetector has been constructed using a narrow-bandgap 
non-fullerene acceptor BTPSV-4Cl with DTPI core.34 Chiral 
Y6-R isomers (with enantiopure R-chiral alkyl side chain) 
showed enhanced catalytic activity and were employed as 
nanoparticle photocatalysts in photocatalytic hydrogen evolution 
under simulated solar light69,70 and for self-suspending sacrificial 
hydrogen production from seawater.71 Compounds with DTPI 
structure demonstrated remarkable electron transport capability 
(1.1 cm2 V−1 s−1) in organic field-effect transistor devices.72 
Glycolated Y6-type compounds exhibited mixed ion-electron 
transport in both conventional and vertical organic 
electrochemical transistor architectures.73

Conclusions
The chemistry of DTPI and the creation of NFA based on them 
is a rapidly developing area. The main attention is currently paid 
to the creation of molecules and solar cells based on them, which 
have high values of photovoltaic efficiency, thermal and 
photostability. The main direction of research development in 
this area is the complication of NFA structures, in particular, to 
produce dimers,74–76 giant trimer star-shape structures77 or 
polymer78,79 structure or development of terminal anchor 
groups.80,81 At present, photovoltaic efficiency values above 
20% have been achieved,82 and the struggle is for hundredths of 
a percent with the obligatory maintenance of the stability of the 
device. To achieve enhanced properties, it is necessary to develop 
not only high values of physical properties, but also to design 
new highly efficient molecules. This review contributes to a 
decision of the latter task.
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