

Monochloride complex of five-mercury anticrown $[(CF_3)_2CHg]_5$ and reinvestigation of crystal structure of this anticrown

**Kirill I. Tugashov, Irina A. Tikhonova, Vladimir B. Shur,
Andrei Yu. Volkonsky and Fedor M. Dolgushin**

Table of Contents:

1. Crystal data and structure refinement parameters for the complexes 5 and 6	S2
2. Experimental section	S3
3. References	S4
4. ^{19}F NMR spectrum of 5	S5
5. ^{19}F NMR spectrum of 6	S5
6. ESI-MS spectrum of 5	S6
7. ESI-MS spectrum of 6	S7

Table S1. Crystal data and structure refinement parameters for the complexes **5** and **6**.

Crystal data	5	6
Chemical formula	C ₁₅ F ₃₀ Hg ₅ ·2(Cl)·2(C ₅ H ₆ N)	C ₁₅ F ₃₀ Hg ₅ ·Cl·C ₅ H ₆ N
<i>M</i> _r	1984.22	1868.66
Crystal system, space group	Monoclinic, <i>P</i> 2 ₁ / <i>c</i>	Triclinic, <i>P</i> -1
Temperature (K)	210	110
<i>a</i> , <i>b</i> , <i>c</i> (Å)	16.549 (3), 14.025 (3), 18.106 (4)	12.8129 (16), 13.1823 (17), 21.548 (3)
β (°)	91.105 (5)	78.002 (3), 81.070 (3), 75.252 (3)
<i>V</i> (Å ³)	4201.5 (15)	3422.5 (8)
<i>Z</i>	4	4
<i>F</i> (000)	3520	3280
Radiation type	Mo <i>K</i> α	Mo <i>K</i> α
μ (mm ⁻¹)	18.49	22.61
Crystal size (mm)	0.34 × 0.28 × 0.22	0.30 × 0.10 × 0.10

Data collection		
Diffractometer	Bruker <i>SMART</i> 1000 CCD	Bruker <i>SMART</i> 1000 CCD
Absorption correction	Multi-scan <i>SADABS</i> 2016/2 ^{S1}	Multi-scan <i>SADABS</i> 2016/2
<i>T</i> _{min} , <i>T</i> _{max}	0.003, 0.022	0.072, 0.211
No. of measured, independent and observed [<i>I</i> > 2σ(<i>I</i>)] reflections	44263, 11166, 8157	36173, 16502, 10454
<i>R</i> _{int}	0.064	0.059
θ values (°)	θ _{max} = 29.0, θ _{min} = 1.8	θ _{max} = 28.0, θ _{min} = 1.0

Refinement		
<i>R</i> [<i>F</i> ² > 2σ(<i>F</i> ²)], <i>wR</i> (<i>F</i> ²), <i>S</i>	0.046, 0.111, 0.83	0.051, 0.116, 1.06
No. of reflections	11166	16502
No. of parameters	572	959
No. of restraints		25
H-atom treatment	H-atom parameters constrained	H-atom parameters constrained
Δρ _{max} , Δρ _{min} (e Å ⁻³)	1.81, -2.09	5.07, -3.55

Experimental Section

Materials and methods. Because of the suspected toxicity of the mercury compounds studied in this work, great care should be exercised during their synthesis, handling and storage. Commercial $(\text{PhCOO})_2\text{Pb}\cdot\text{H}_2\text{O}$ (Hözel-Biotech) was used without additional purification. Solvents were purified by conventional methods and freshly distilled prior to use over CaH_2 (ethanol and pyridine) and LiAlH_4 (diethyl ether) under Ar. The ^{19}F NMR spectra were measured on a Bruker Av-300 instrument using CFCl_3 as external standard.

Synthesis of $(\text{PyH})_2\{[(\text{CF}_3)_2\text{CHg}]_5\}\text{Cl}_2$ (5). The starting complex **5** was prepared according to the published procedure^{S2} (where it was erroneously described as $[(\text{CF}_3)_2\text{CHg}]_5\cdot 2\text{Py}\cdot 2\text{H}_2\text{O}$), re crystallised from ethanol and dried in vacuum at 20°C for 3 h. Anal. calcd. for $\text{C}_{25}\text{H}_{12}\text{N}_2\text{F}_{30}\text{Cl}_2\text{Hg}_5$ (%): C, 15.13; H, 0.61; F, 28.72. Found: C, 15.30; H, 0.65; F, 28.59. ^{19}F NMR (acetone- d_6 , δ , ppm): –45.9 (s with satellites, $^3J_{\text{FHg}} = 237$ Hz). The obtained data correspond to the literature.

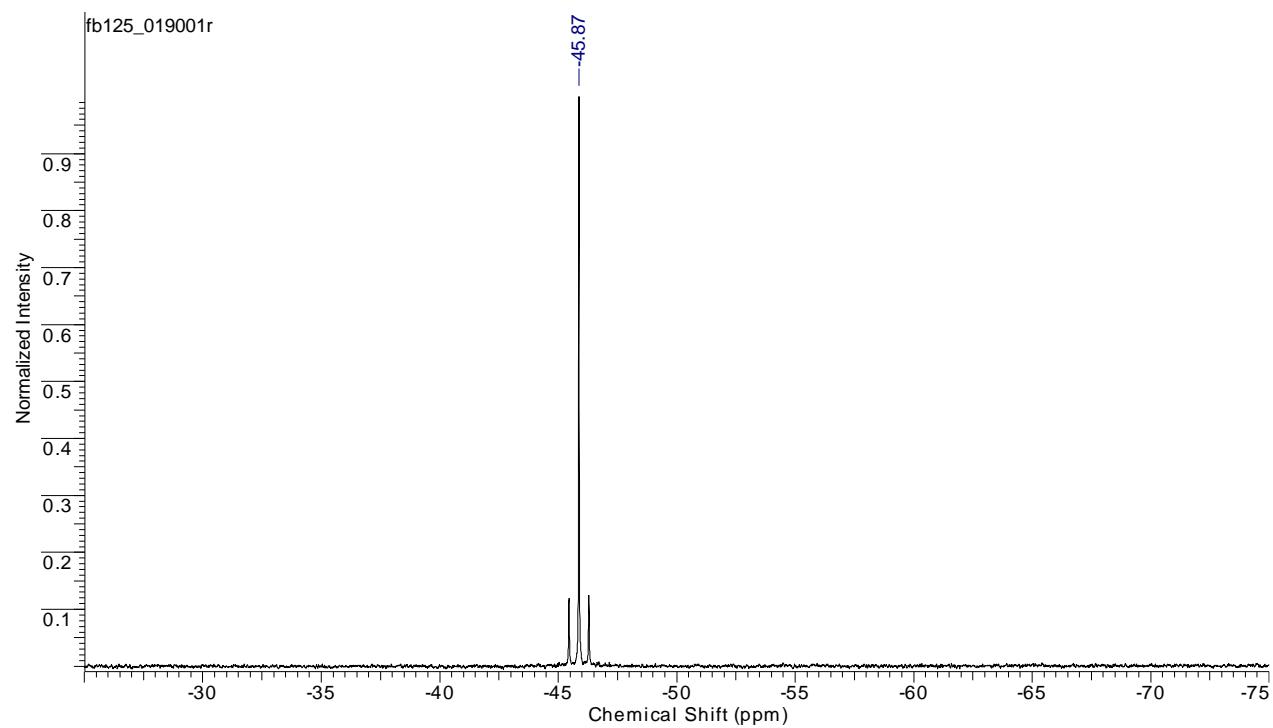
Synthesis of $(\text{PyH})\{[(\text{CF}_3)_2\text{CHg}]_5\}\text{Cl}$ (6). To a suspension of $(\text{PhCOO})_2\text{Pb}\cdot\text{H}_2\text{O}$ (0.0235 g, 0.05 mmol) in EtOH (4 mL) was added a solution of **5** (0.0990 g, 0.05 mmol) in EtOH (3 mL). The resulting mixture that quickly became cloudy was vigorously stirred for 30 min at 20°C, then centrifuged for 20 min (4000 RPM), filtered off, and the supernatant was completely evaporated. The obtained solid residue was extracted with diethyl ether (2×3 mL), and this extract was allowed to slowly evaporate to ~0.5 mL overnight. The precipitated colourless crystals of **6** were filtered off, washed with cold CH_2Cl_2 (2 × 0.5 mL) and dried in vacuum at 20°C for 3 h. Yield of **6**: 0.0288 g (31%). Anal. calcd. for $\text{C}_{20}\text{H}_6\text{NF}_{30}\text{ClHg}_5$ (%): C, 12.86; H, 0.32; F, 30.50. Found: C, 12.98; H, 0.55; F, 30.21. ^{19}F NMR (acetone- d_6 , δ , ppm): –46.1 (s with satellites, $^3J_{\text{FHg}} = 231$ Hz). The crystals of **6** for the X-Ray diffraction study were grown from EtOH solution.

X-ray Diffraction Study. Diffraction data for **5** and **6** were collected on a Bruker SMART 1000 CCD diffractometer using graphite-monochromated Mo-K α radiation. Semiempirical absorption correction based on equivalent reflections was applied using the SADABS program.^{S3} The structures were solved by direct methods and refined by full-matrix least-squares procedures on F^2 with the SHELXTL software package.^{S4,S5} The hydrogen atoms were placed geometrically and included in the structure factors calculations in the riding motion approximation with $U_{\text{iso}}(\text{H}) = 1.2U_{\text{eq}}(\text{C})$. Molecular graphics were drawn using the SHELX software. For carrying out the X-ray diffraction study, the samples of crystals of **5** and **6** were not washed and dried in vacuum.

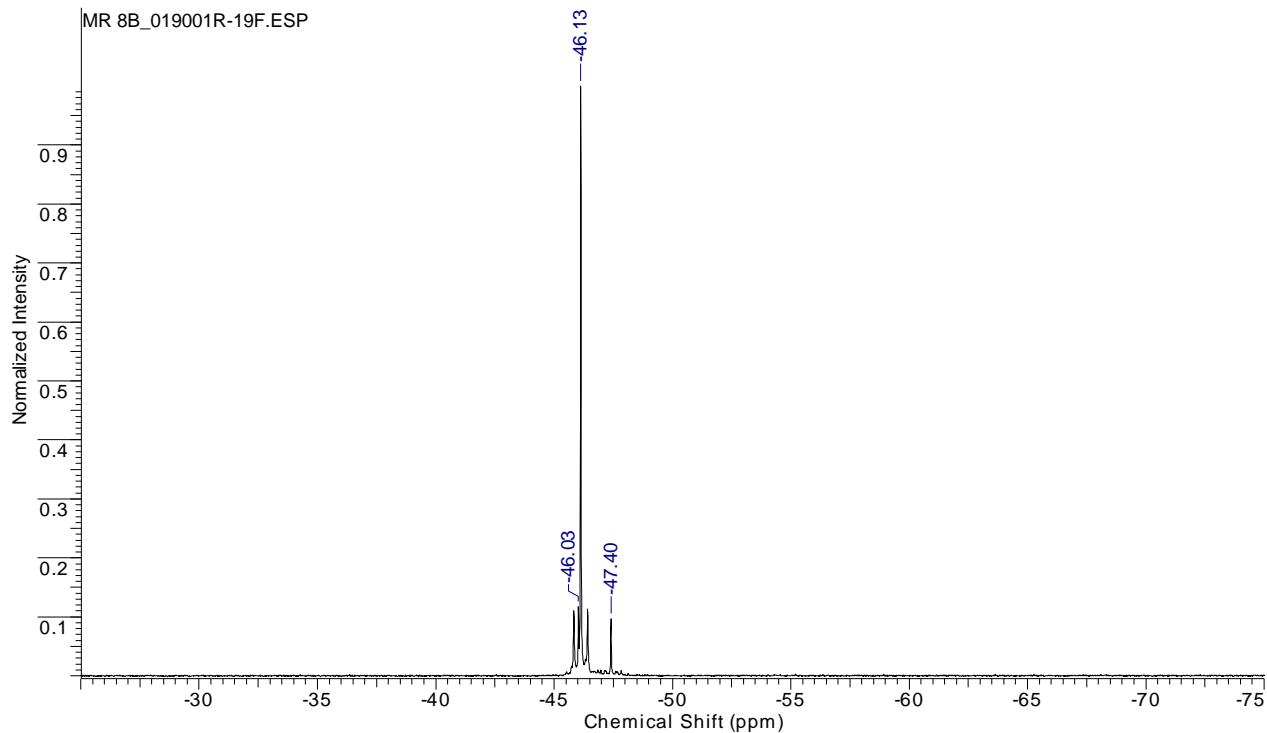
MS Study. High-resolution mass spectra were recorded on a LCMS-9030 device (Shimadzu, Japan) by electrospray ionization mass spectrometry (ESI-MS). Measurements were carried out in negative ion mode; samples were dissolved in acetonitrile and injected into the mass-spectrometer chamber from an HPLC system LC-40 Nexera (Shimadzu, Japan). The following parameters were used: capillary voltage 4.0 kV; mass scanning range: m/z 150–4000; external calibration with solution NaI in MeOH/H₂O; drying and heating gases (nitrogen) (each

10 L/min); nebulizing gas (nitrogen) (3 L/min); interface temperature: 300°C; flow rate acetonitrile (100%) 0.4 mL/min. Molecular ions in the spectra were analyzed and matched with the appropriately calculated *m/z* and isotopic profiles in the LabSolutions v.5.114 program.

References


S1. L. Krause, R. Herbst-Irmer, G. M. Sheldrick and D. Stalke, *J. Appl. Crystallogr.*, 2015, **48**, 3; <https://doi.org/10.1107/S1600576714022985>.

S2. I. L. Knunyants, E. M. Rokhlin and A. Yu. Volkonskii, *Bull. Acad. Sci. USSR, Div. Chem. Sci.*, 1979, **28**, 1692; <https://doi.org/10.1007/BF00950996>.


S3. *SADABS, Version 2016/5*, Bruker AXS, Madison, WI, 2016.

S4. G. M. Sheldrick, *Acta Crystallogr.*, 2008, **A64**, 112; <https://doi.org/10.1107/S0108767307043930>.

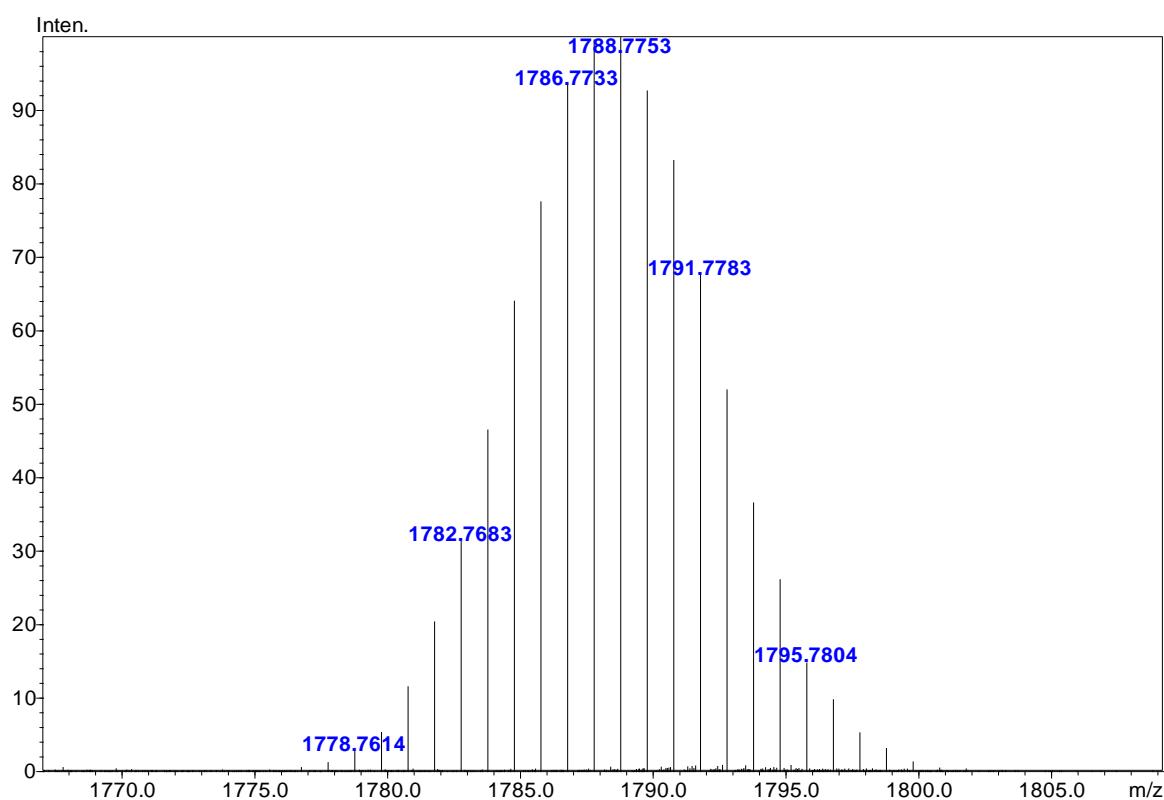
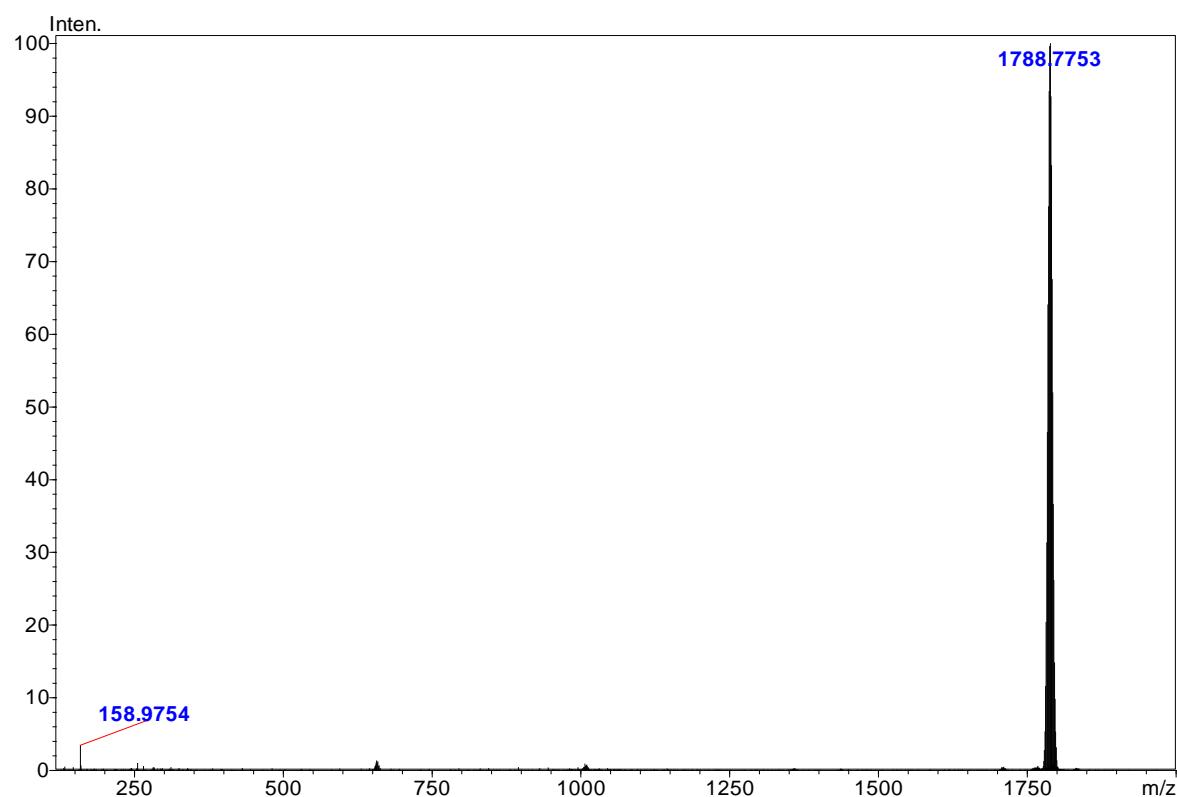


S5. G. M. Sheldrick, *Acta Crystallogr.*, 2015, **C71**, 3; <https://doi.org/10.1107/S2053229614024218>.

Figure S1. ^{19}F NMR spectrum of complex **5** in acetone- d_6 .

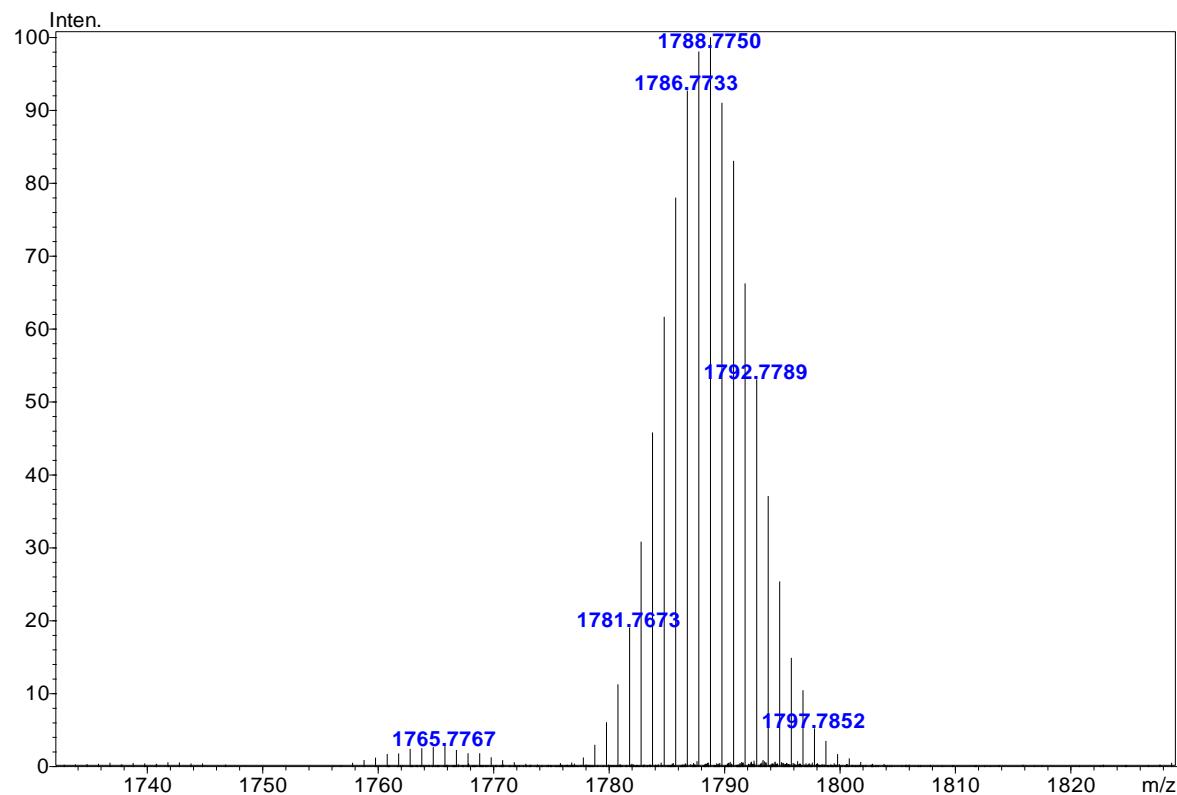
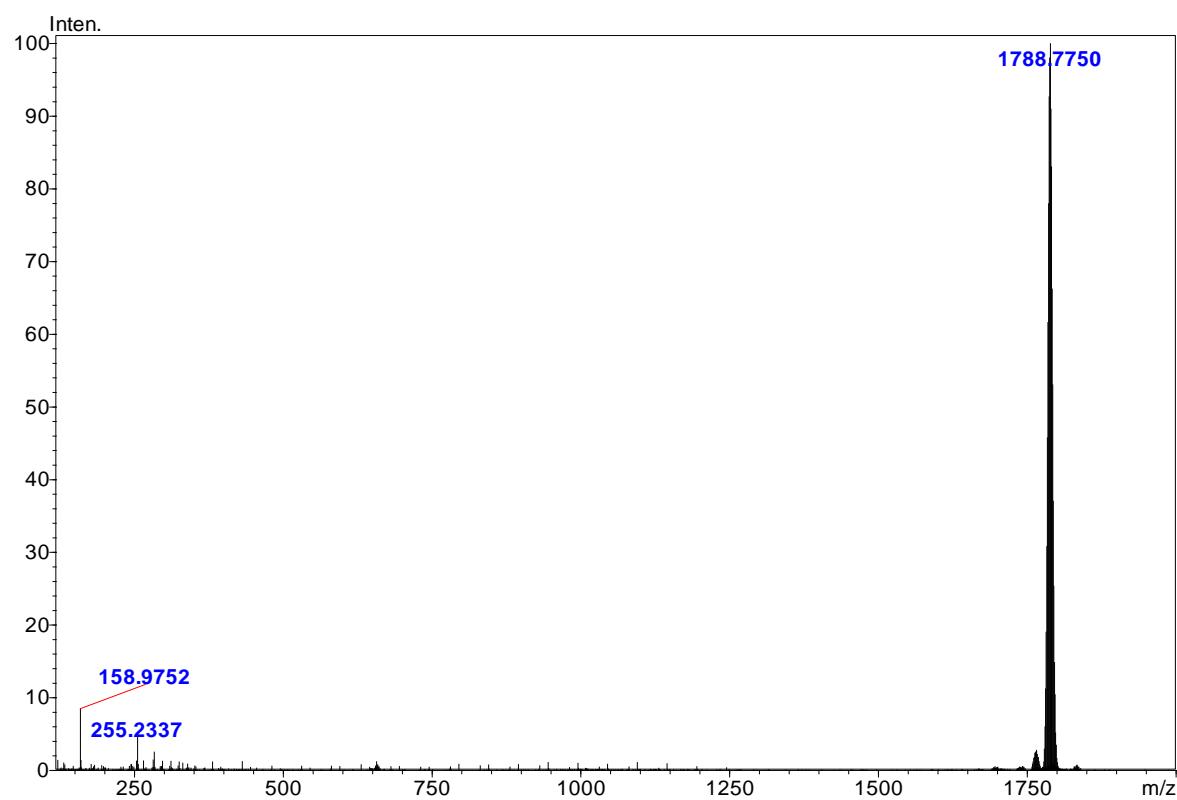



Figure S2. ^{19}F NMR spectrum of complex **6** in acetone- d_6 .

Figure S3. ESI-MS spectrum of complex **5** in acetonitrile.

The maxima molecular ion peaks at -1787.7742 (int. 99%) and -1788.7753 (int. 100%) correspond to $\{[(CF_3)_2C^{202}Hg]_2[(CF_3)_2C^{200}Hg]_2[(CF_3)_2C^{199}Hg]\}^{35}Cl^-$ and $\{[(CF_3)_2C^{202}Hg]_2[(CF_3)_2C^{200}Hg]_3\}^{35}Cl^-$, respectively.

Figure S4. ESI-MS spectrum of complex **6** in acetonitrile.

The maxima molecular ion peaks at -1787.7741 (int. 98%) and -1788.7750 (int. 100%) correspond to $\{[(CF_3)_2C^{202}Hg]_2[(CF_3)_2C^{200}Hg]_2[(CF_3)_2C^{199}Hg]\}^{35}Cl^-$ and $\{[(CF_3)_2C^{202}Hg]_2[(CF_3)_2C^{200}Hg]_3\}^{35}Cl^-$, respectively.