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The design of multitarget ligands is one of the trends in 
modern medicinal chemistry. Hybrid molecules could 
revolutionize the treatment of multifactorial pathologies, such 
as cardiovascular diseases,1 diabetes,2 cancer,3 inflammatory 
processes,4 requiring action on multiple receptors or signaling 
pathways. A significant advantage of multi-target drugs over 
combination drugs is a decrease in the effective concentration 
and, in the long term, a decrease in the toxic effect on the body.5 
Combining functional groups in one molecule can significantly 
improve the pharmacokinetics of drugs due to better binding 
to specific receptors and is of undoubted interest for the design 
of new multi-target drugs.6 Acetanilides are widely used in 
medicine as antipyretics,7 and a number of derivatives also 
exhibit antibacterial and cytotoxic8 activity. Acetanilide 
fragment is included in antiviral drugs.9,10 It has been shown 
that replacing the oxyethyl bridge with an amide one improves 
the binding of the antiviral drug to the target.11 At the same time, 
the dihydropyridin-2-one structure is a popular scaffold for 
important classes of compounds exhibiting diverse biological 
activities: antibacterial,12 antiviral13 and antitumor.14 Inhibition 
of a number of kinases15,16 and reductases17 by dihydropyridinone 
derivatives has been reported, which implies a search for 
promising cardiac drugs among pyridone derivatives.

Several synthetic approaches to the preparation of poly-
substituted pyridin-2-ones are known, the [3  +  3] cycloaddition 
being the leading strategy.18 Assembly of dihydropyridin-2-one 
from an amide and an in situ generated enone is possible,19 the 
oxidative coupling of an unsaturated aldehyde and an enamine 
are also documented.20 The most commonly used precursor in 
these cases is aminocrotonate while the second component of 
these cascade transformations can be unsaturated ester,21 acid 
chloride,22 or a-bromo enal.23 There is evidence that this kind of 
syntheses can be carried out in a multicomponent version.24,25 
An approach involving the recyclization of lactone26 and itaconic 
anhydride with an aminoalkenoic ester is also promising.27 The 
last synthetic solution brings us close to the synthesis of 

2-(pyridin-2-one)acetanilides by recyclization of N-arylitacon-
imides with 3-aminocrotonate.

We have previously shown that the transformation of 
itaconimides into hetarylacetanilides containing a pyridine ring 
could be easily carried out by employing such C,N-bi-
nucleophiles as b-aminocyclohexen-2-ones,28 cyanomethylene-
benzimidazole,29 or aminouracils.30 This work proposes an 
effective one-step synthesis of various 6-alkyl-3-(2-arylamino- 
2-oxoethyl)-2-oxo-3,4-dihydro-1H-pyridine-5-carboxylates by 
recyclization between aminoalkenoic esters 1a–c and N-aryl-
itaconimides 2a–i (Scheme 1).

As noted in previous works,28–30 the recyclization of 
itaconimides by carbo- and heterocyclic C,N-binucleophiles 
proceeded smoothly when the reagents were boiled in acetic 
acid. In this work we have found that the optimal medium for the 
reaction of N-arylitaconimides 2a–i with aminoalkenoates 1a–c 
was also acetic acid. Carrying out the reaction in alcohols, 
dioxane, and acetone did not cause the recyclization.

Several routes are theoretically possible for the reaction in 
question (Scheme 2). The first step may be the aza-addition of 
the aminoalkenoate 1a–c at the conjugated double bond of the 
imide 2a–i with the formation of the aza-Michael adduct A. The 
products of its recyclization may be tetrahydroazepin-4-ones 
4a–l or dihydropyridin-4-ones 5a–l. A similar direction of 
recyclization is realized for itaconimides and cyanomethylene-
benzimidazole.29 An alternative route should begin with the 
Michael addition of the C-nucleophilic center of the amino-
alkenoate 1a–c to form adduct B. Options for its recyclization 
could be dihydropyridin-2-ones 3a–l or tetrahydroazepin-2- 
ones 6a–l. We previously implemented such a route for the 
reaction between itaconimides and 3-aminocyclohex-2-enones.28 
The structural similarity of amino esters 1a–c and 3-amino-
cyclohex-2-enones suggests that this direction is most likely 
in our case. The structure of 6-alkyl-3-(2-arylamino-2-oxo- 
ethyl)-2-oxo-3,4-dihydro-1H-pyridine-5-carboxylates 3a–l was 
determined using NMR spectroscopy. The choice between 
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alternative structures is made based on the position of the NH 
proton signals. The spectra of the products contain two one-
proton singlets in the region of 9.7–10.3 ppm, corresponding to 
amide groups, which convincingly indicates the implementation 
of route B leading to structures either 3a–l or 6a–l, both 
containing amide and lactam NH groups. In structures 4a–l 
and 5a–l, corresponding to aza intermediate A, one of the 
nitrogen atoms belongs to enamine fragment whose proton 
should resonate in a lower field.29

For the final identification of the obtained compounds, 
two-dimensional NMR spectroscopy data were analyzed. The 
1H–1H NOESY spectrum shows clear cross-peaks of the amide 
proton at 9.97 ppm with the diastereotopic protons of the exo-
methylene group at 2.38 and 2.41 ppm (Figure 1). This clearly 
indicates the structure of dihydropyridin-2-one 3, since in the 
spectrum of tetrahydroazepin-2-one 6 the correlation patterns 
should be different. The amide NH would give a pronounced 
cross peak with the methine proton at position 4 of the ring and, 
perhaps less pronounced, with the protons at the methylene 
groups of positions 3 and 5.

In conclusion, we have developed a new synthesis of 6-alkyl-
3-(2-arylamino-2-oxoethyl)-2-oxo-3,4-dihydro-1H-pyridine-5-

carboxylates based on the regioselective recyclization of 
N-arylitaconimides upon their reaction with 3-aminoalk-2-enoic 
acid esters. The proposed cascade reaction route involves 
Michael addition of the C-center of the aminoalkenoate at the 
activated multiple bond of the electrophile and subsequent 
intramolecular transamidation of the intermediate with 
simultaneous recyclization.

Mass spectra were recorded at the research base of the Center 
for Collective Use of Scientific Equipment of Voronezh State 
University.
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Scheme  1  Reagents and conditions: i, AcOH, reflux.
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Figure  1  The most significant correlations in the 1H–1H NOESY spectrum 
of ethyl 3-(2-anilino-2-oxoethyl)-6-methyl-2-oxo-3,4-dihydro-1H-pyridine-
5-carboxylate 3a and alternative ethyl 7-methyl-2-oxo-4-(phenyl-
carbamoyl)-1,3,4,5-tetrahydroazepine-6-carboxylate 6a.
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