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Many biologically active natural and artificial compounds have 
spirocyclic structure.1 The current interest in these compounds 
is defined by a reduced conformational entropy penalty for 
them upon binding to a protein target.2 Therefore, synthesis of 
spirocyclic derivatives is trending in modern medicinal 
chemistry.3 Our group is focused in incorporation of imidazol-
4-one and similar heterocyclic scaffolds into spirocyclic 
systems due to their underexplored potential in the drug 
design.4,5 Such approach is inspired by the structure of already 
marketed drugs (Scheme 1, upper line): Irbesartan,6 Fidarestat7 
and Sparsentan,8 as well as recent reports on bioactive 
derivatives.9–12 The most developed routes to such compounds 
are based on [3 + 2]-cycloaddition reactions, such as azomethine 
ylide cycloaddition,10,13–20 nitrile oxide and nitrile imine 
cycloadditions,21–26 nitrones,27,28 formal cycloaddition of 
allenes29 and some others.

Spiro systems with a six-membered cycle are rather limited. 
The major route toward them consists in the Diels–Alder reaction 
of heterocycles containing exocyclic double bond12,30–32 or their 
stepwise synthetic analogs.33,34 In previous years, the major 
attention was paid to oxazolone (azlactone) derivatives, labile 
compounds that would undergo ring-cleavage to amino acid 
derivatives (Scheme 1, bottom line).35–40

In contrast, Diels–Alder reaction of 5-alkyilideneimidazol-4-
ones (‘eneimidazol-4-ones’) is virtually unknown. These species 
should give stable spirocyclic derivatives, and therefore could 
serve useful templates for drug design. However, the presence of 
the second nitrogen atom in these molecules makes them more 
basic and also reduces their reactivity. In this work, we performed 
the first study of Diels–Alder reaction of eneimidazol-4-ones 
and established its major regularities.

A study of the Diels–Alder reaction started with an attempt to 
apply literature reaction conditions for azlactones35 on model 
substrate 1a (Scheme 2). We found that thermal reaction with 
2,3-dimethylbutadiene 2a was extremely slow, in contrast 
performing the same reaction at −25 °C under AlCl3 catalysis 
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results in formation of the desired product 3a. Screening of the 
catalyst (e.g. TiCl4) and reaction conditions (solvent, temperature, 
for details see Online Supplementary Materials, Table S1) 
revealed optimal conditions. 

The found reaction conditions were expanded for different 
arylideneimidazol-4-ones 1 (see Scheme 2). It was found that the 
reaction proceeded well only for derivatives 1b,f, containing 
strong and moderate acceptor substituents. For arylideneimidazol-
4-ones 1c–e with donating substituents the desired products 3c–e 
were formed in limited amounts. The use of Lewis acid as catalyst 
initiates polymerization of diene 2a, so its great excess should be 
used. Moreover, since imidazol-4-one ring, as we have mentioned, 
is basic, complex of products 3 with AlCl3 is hard to destroy, which 
leads to formation of by-products. The same reaction conditions 
were tested in reaction of substrate 1a with cyclopentadiene 2b 
(see Scheme 2). In this case two cycloadducts exo-3g and endo-3g 
are formed in 1 : 1 ratio and 97% total yield.

Such unsatisfactory results prompted us to search for 
realization of thermal Diels–Alder reaction. First, the reaction of 
more reactive dienes 2 was studied (Scheme 3, upper line).  
(E)-1-Phenylbutadiene 2c reacts with arylideneimidazol-4-one 
1a upon reflux in toluene for 24 h with formation of two 
cycloadducts exo-3h and endo-3h in 2 : 1 ratio and 97% total 
yield. The stereochemistry of major diastereomer exo-3h was 
determined by single crystal X-ray diffraction analysis, which 
was in accordance with the least sterically hindered approach of 
the dienophile (Figure 1).† For the second diastereomer endo-3h 
the stereochemistry was assigned by assumption of the same 
synchronous mechanism and was further confirmed by NOESY. 
Nearly the same result was obtained for reaction of (E)-1-phenyl
butadiene 2c with electron-rich 4-methoxybenzylideneimidazol-
4-one 1d (90% yield and 1.8 : 1 dr), but it required longer reaction 
time (24 h) to achieve complete conversion. The reaction of 
model substrate 1a with very reactive (E)-4-phenyl-2-(tert-
butyldimethylsilyloxy)buta-1,3-diene 2d was complete in 6 h 
and provided two cycloadducts exo-3j and endo-3j in 2.3 : 1 
ratio and 95% total yield.

Based on this experience, we studied the thermal reaction 
with 2,3-dimethylbutadiene 2a. Since original dienophiles 1 did 
not enter the reaction even in refluxing toluene, we proposed to 
enhance their reactivity by introducing acceptor group into 

heterocyclic core (Scheme 3, bottom line). Indeed, 2-trifluoro
methylimidazol-4-ones 1¢a–c41 readily underwent cycloaddition 
with 3,4-dimethylbutadiene 2a to give cycloadducts 3¢a–c in 
65–71% yields. Noteworthy, even dienophiles with electron rich 
aromatic groups (such as 1¢c) are able to react, when trifluoro
methyl group is introduced. Such acceleration effect is associated 
with the strong electron-withdrawing character of trifluoromethyl 
group, which significantly lowers energy of LUMO of dienophile 
and enables more stabilizing orbital interactions.

In summary, the Diels–Alder reaction of arylideneimidazol-
4-ones with various dienes was studied. Although the Lewis acid 
catalyzed reaction is providing desired spirocyclic products, it 
suffers from low yields. For active dienes, the more efficient 
pathway consists in usual thermal activation. The substrates, 
which do not readily undergo thermal cycloaddition, can be 
preactivated via introduction of trifluoromethyl group at the 
2-position of the imidazolone cycle.
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the Russian Science Foundation (RSF grant no. 23-73-10004). 
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†	 Crystal data for exo-3h. C22H21BrN2O (M = 409.32), orthorhombic, 
space group Pbca, a = 15.7560(13), b = 13.5879(11) and 
c = 17.8322(15) Å, V = 3817.6(5) Å3, m(MoKa) = 2.166 mm–1. 
	 CCDC 2426596 contains the supplementary crystallographic data for 
this paper. These data can be obtained free of charge from The Cambridge 
Crystallographic Data Centre via https://www.ccdc.cam.ac.uk.
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probability level.
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