

Molecular dynamics simulation of the electrical conductivity of α,ω -bis(3-aminopropyl)polydimethylsiloxane

Gennady I. Makarov

Table S1. Molecular mass distribution of various α,ω -bis(3-aminopropyl)polydimethylsiloxane molecules containing n dimethylsiloxane units, in the APDMS850 mixture.

Number of units n	Number of molecules
2	2
3	4
4	9
5	14
6	19
7	22
8	22
9	20
10	16
11	12
12	8
13	5
14	3
15	2
16	1

Derivation of equation for isothermal compressibility

Let us assume that dependency of the simulation cell volume V on pressure p can be described by means of the linear combination of two exponential functions:

$$V = V(p) = v_1 e^{-\beta_1(p-p_0)} + v_2 e^{-\beta_2(p-p_0)} + V_{inf}, \quad (S1)$$

where p_0 is the value of pressure under normal conditions. It is not difficult to notice that:

$$\lim_{p \rightarrow \infty} V(p) = V_{inf}, \quad (S2)$$

$$V(p_0) = v_1 + v_2 + V_{inf} = V_0, \quad (S3)$$

that is, at infinitely high pressure the cell volume tends to the value of V_{inf} , which acquires the meaning of the simulation cell volume, achievable at the ultimate compression, while the sum of V_{inf} and the v_1 and v_2 coefficients is equal to the equilibrium volume of the simulation cell V_0 at standard pressure. On the basis of equation S3, one can obtain an equation for the isothermal compressibility dependency on pressure:

$$\kappa(p) = -\frac{1}{V} \left(\frac{dV}{dp} \right)_{T=const},$$

$$\kappa(p) = \frac{\beta_1 v_1 e^{-\beta_1(p-p_0)} + \beta_2 v_2 e^{-\beta_2(p-p_0)}}{v_1 e^{-\beta_1(p-p_0)} + v_2 e^{-\beta_2(p-p_0)} + V_{inf}}. \quad (S4)$$

The isothermal compressibility calculated in such a way tends to zero at infinitely high pressure:

$$\lim_{p \rightarrow \infty} \kappa(p) = 0, \quad (S5)$$

which is to be expected. Let us accept the $\kappa(p)$ value at standard pressure p_0 as an estimate of the isothermal compressibility coefficient κ_T :

$$\kappa_T = \kappa(p_0) = \frac{\beta_1 v_1 + \beta_2 v_2}{v_1 + v_2 + V_{inf}}. \quad (S6)$$

Derivation of equation for concentration of silyl and silanol ions

Let us assume that the molecular mass distribution of PDMS1250 obeys the Poisson distribution along with APDMS850. Then the λ parameter for PDMS1250 is estimated to be 14.7, which allows us to calculate the molar concentrations C_k of polydimethylsiloxane molecules PDMS_k of different lengths k in it. Let us further assume that the equilibrium constant K for dissociation of the polysiloxane chain into PDMS_i⁻ and PDMS_j⁺ ion pair is the same for polydimethylsiloxane molecules of any size. Then the following is valid:

$$K = \frac{[PDMS_i^-][PDMS_j^+]}{[PDMS_k]}, \quad i + j = k. \quad (S7)$$

Denote concentrations of silyl and silanol ions as a_k :

$$[PDMS_i^-] = [PDMS_j^+] = a_k. \quad (S8)$$

Sum of silyl or silanol ion concentration and concentration of corresponding polydimethylsiloxane molecules PDMS_k is equal to C_k , concentration of polydimethylsiloxane molecules PDMS_k in the absence of dissociation:

$$a_k + [PDMS_k] = C_k. \quad (S9)$$

Thence equation S7 can be expressed using a_k and C_k values:

$$K = \frac{a_k^2}{C_k - a_k} \quad (S10)$$

and transformed into quadratic equation

$$a_k^2 = KC_k - Ka_k, \quad (S11)$$

$$a_k^2 + Ka_k - KC_k = 0, \quad (S12)$$

which is solvable for each a_k and C_k :

$$\Delta = K^2 + 4KC_k, \quad a_k^2 = \frac{1}{2} \left(\sqrt{K^2 + 4KC_k} - K \right). \quad (S13)$$

Topologies, cells and GROMACS run parameters files

Topologies, cells and GROMACS run parameters files, used for calculation of physicochemical characteristics of APDMS850, are available in ZENODO repository <https://doi.org/10.5281/zenodo.15276451>.