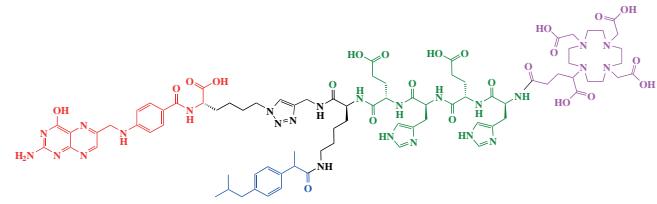


Synthesis of a pteroic-based conjugate with ibuprofen moiety and macrocyclic chelator DOTA-GA


Natalia S. Volkova,^a Anton A. Larenkov,^b Nina S. Boutakova,^a
Elena K. Beloglazkina^a and Aleksei E. Machulkin^{*a}

^a Department of Chemistry, M. V. Lomonosov Moscow State University, 119991 Moscow, Russian Federation.
E-mail: alekseymachulkin@rambler.ru

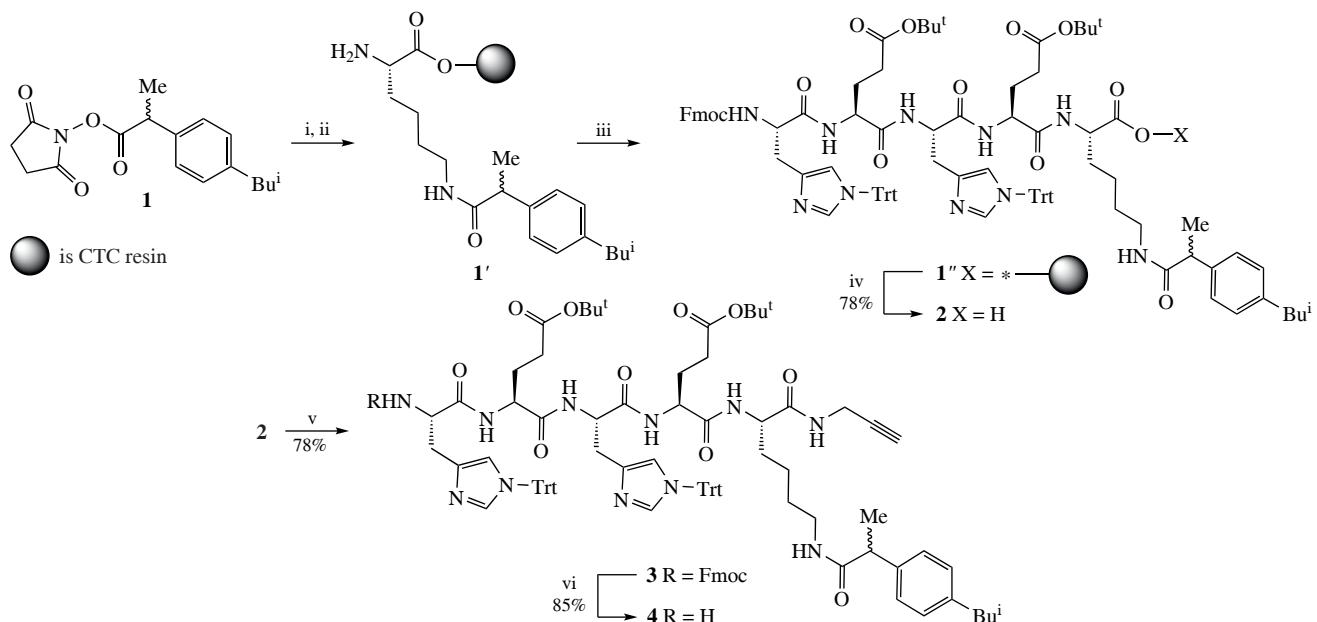
^b Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, 123098 Moscow, Russian Federation

DOI: 10.71267/mencom.7764

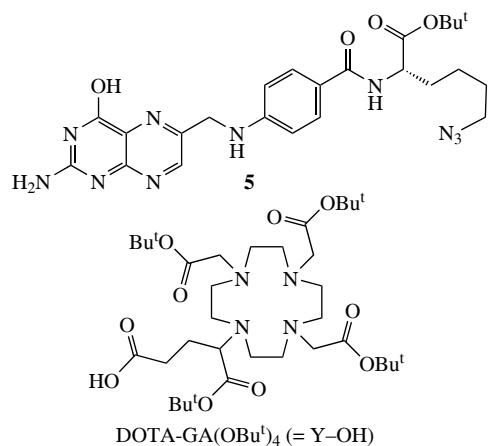
Conjugate containing fragments of pteroic acid, anti-inflammatory drug ibuprofen, macrocyclic chelator DOTA-GA and (His-Glu)₂ moiety has been synthesized. Key structural motifs of this compound were introduced to optimize the pharmacokinetic characteristics of the pteroic acid-based conjugate. The complexation of the conjugate with radioactive lutetium-177 provided radiochemical yield of >99% and radiochemical purity of 97.6%.

Keywords: folate receptors, conjugates, delivery, peptide, pteroic acid, peptide synthesis, DOTA-GA.

Oncological pathologies are among the most socially significant diseases, ranking second among all causes of death in the world.¹ Among positron-emitting radionuclides, ¹⁸F and ⁶⁸Ga currently occupy a leading position in terms of the number of studies.² Together with β -emitting ¹⁷⁷Lu, ⁶⁸Ga make up a promising theranostic pair: conjugates with ⁶⁸Ga are used for the diagnosis of malignant neoplasms, and conjugates with ¹⁷⁷Lu are used for therapy.³

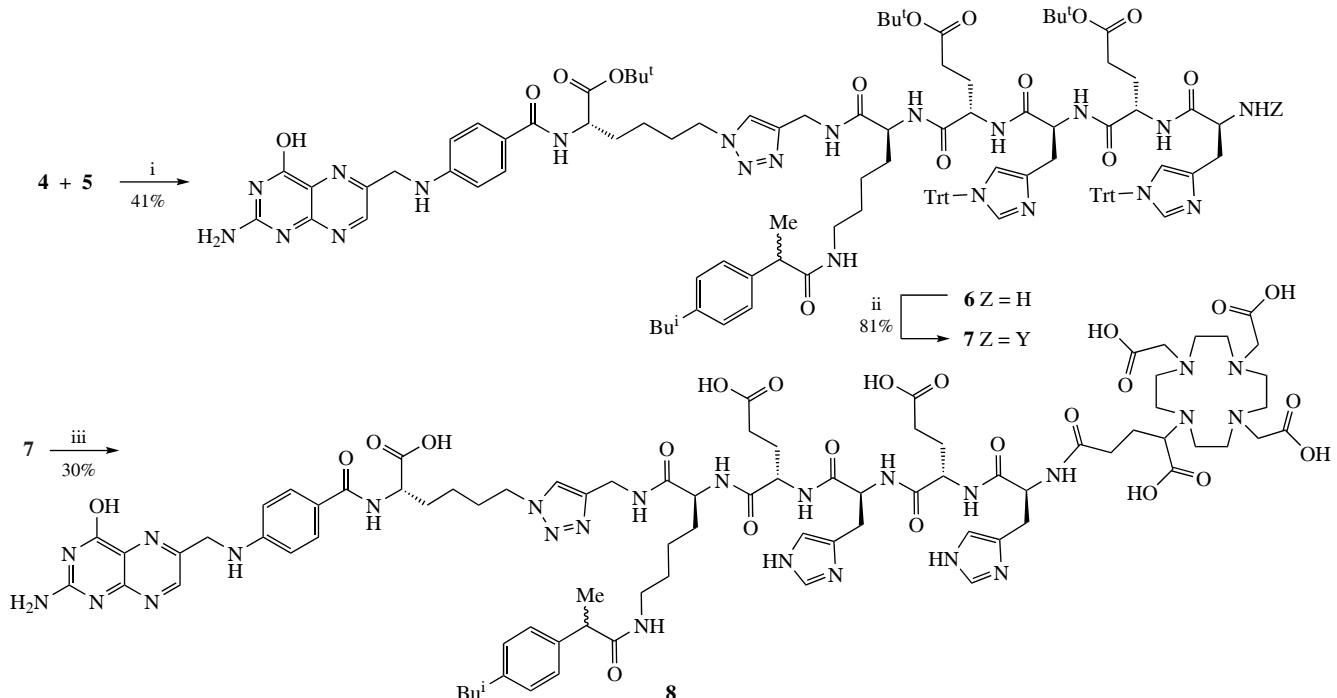

One of the most perspective tools in oncology is receptor-specific molecular therapy and imaging.^{4,5} A relatively new and promising target for nuclear medicine is folate receptors (FR), a group of proteins that provide unidirectional transport of folates into the cells. There are four FR isoforms: FR α , FR β , FR γ , and FR δ , of which FR α and FR β are of greatest interest for medicine.⁶ FR α is overexpressed in a number of tumors, while is practically not expressed in healthy tissues.⁷ FR β is overexpressed predominantly on hematopoietic cells of the myeloid lineage and in 70% of cases of acute myeloid leukemia,^{8,9} as well as in activated macrophages, which is very promising for imaging autoimmune processes (e.g., rheumatoid arthritis).^{10,11}

The aim of this work was to synthesize new pteroic acid-based conjugate intended for radionuclide therapy of malignant neoplasms. Its design is based on the structural modification of previously¹² obtained conjugate of folic acid with the (HE)₂(His-Glu-His-Glu) peptide (for the structure, see Online Supplementary Materials, Scheme S1). In this work, the key structural modification was the introduction of ibuprofen, a non-steroidal anti-inflammatory drug, to increase the conjugate accumulation in tumor tissues and to reduce its accumulation in non-target organs, such as kidneys.¹³ A key feature of this conjugate is the presence of certain structural fragments: (His-Glu)₂, which does not affect the binding capacity with FRs but allows for a 2–4-fold decrease in the accumulation in non-target tissues (mainly in the kidneys),^{12,14} a fragment of ibuprofen as an albumin-binding entity to increase the accumulation of the


radiopharmaceutical in the tumor focus,^{15–17} and applied in medical imaging chelating fragment DOTA-GA for subsequent binding to ⁶⁸Ga or ¹⁷⁷Lu.

Important points of the synthesis (Scheme 1) was the preparation of modified peptide **4** comprising Lys-(His-Glu)₂ sequence and ‘azidolysine’-containing pteroic acid **5** (see inset) which, similarly to folic acid, had an affinity for FRs.^{18,19} The trityl-, *tert*-butyl-, and Boc-protected Lys-(His-Glu)₂ peptide was synthesized according to Fmoc protocols using 2-chlorotriptyl chloride (CTC) resin and the appropriate trityl- and *tert*-butyl-protected amino acids.²⁰ For this purpose, *O*-CTC-tethered *N*²-Fmoc-lysine (for synthetic details, see Online Supplementary Materials, Scheme S2) was coupled with *N*-hydroxysuccinimide ester of *rac*-ibuprofen **1** to afford amino amide **1'** (see Scheme 1). Next, peptide sequence was assembled on the modified resin by sequentially attaching Fmoc-Gly(OBu^t)-OH and Fmoc-His(Trt)-OH and removing the Fmoc protections, with the exception of the terminal Fmoc group, to produce resin-tethered material **1''**. Removal of the peptide from CTC resin was performed under acidic conditions to afford compound **2** whose further reactions with propargylamine and removal of the Fmoc protection led to compound **4** (see Scheme 1). The synthesis of pteroic acid modified with an azidolysine fragment, compound **5**, was performed traditionally (see Online Supplementary Materials, Scheme S3).

The final steps of the synthesis of the target conjugate **8** are shown in Scheme 2. Alkyne **4** and azide **5** entered the 1,3-dipolar cycloaddition reaction to form triazole derivative **6**. Its reaction with DOTA-GA(OBu^t)₄ under peptide synthesis conditions and subsequent removal of all protective groups led to the target conjugate **8**. When removing the protective groups in the last step using standard methods, LCMS data revealed that in addition to the target compound **8**, the reaction mixture contained the corresponding mono-, di-, and tri-*tert*-butylated derivatives, which, due to the insignificant difference in molecular weight


Scheme 1 Reagents and conditions: i, *O*-CTC-tethered N^2 -Fmoc-lysine, DIPEA (1.25 equiv.), CH_2Cl_2 ; ii, 20% 4-methylpiperidine, DMF; iii, multistep peptide synthesis (see Online Supplementary Materials); iv, 0.75% CF_3CO_2H , CH_2Cl_2 ; v, $HC\equiv CH_2NH_2$, DIPEA, DMF; vi, Et_2NH , MeCN.

and retention on silica gel with the target product, could not be separated using column chromatography. This required optimization of the final step conditions (see Online Supplementary Materials, Table S1). The final product **8** was purified by preparative HPLC.

An evaluation experiment was then conducted on radiolabeling of the purified **8** conjugate with n.c.a. lutetium-177. The results of radio-TLC and radio-HPLC showed that radioconjugate [¹⁷⁷Lu]Lu-**8** was obtained with a radiochemical yield of >99% and a radiochemical purity of 97.6%, the resulting graph is provided in the Online Supplementary Materials. Thus, at a [Lu]:[**8**] molar ratio of 1:5, a specific activity of 142 MBq nmol⁻¹ was achieved for [¹⁷⁷Lu]Lu-**8** radioconjugate.

To summarize, synthetic approach to conjugate **8** containing the fragment of pteroxic acid as well as ibuprofen, chelator

Scheme 2 Reagents and conditions: i, $CuSO_4 \cdot 5H_2O$, AscNa, DMF; ii, DOTA-GA(OBu^t)₄, HOBt, HBTU, DIPEA, DMF; iii, CF_3CO_2H , Pr_3SiH , H_2O .

DOTA-GA and (His-Glu)₂ moieties was found suitable for further *in vitro* and *in vivo* biological investigations.

The study was supported by the state assignment of Lomonosov Moscow State University (project no. AAAA-A21-121012290046-4, pteroic acid conjugates synthesis and labeling) and by The Russian Science Foundation (grant no. 22-15-00098-P, <https://rscf.ru/project/22-15-00098/>, validation of ibuprofen introduction to the peptide sequence).

Online Supplementary Materials

Supplementary data associated with this article can be found in the online version at doi: 10.71267/mencom.7764.

References

- 1 H. Sung, J. Ferlay, R. L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal and F. Bray, *CA: Cancer J. Clin.*, 2021, **71**, 209; <https://doi.org/10.3322/caac.21660>.
- 2 G. Crişan, N. S. Moldovean-Cioroianu, D.-G. Timaru, G. Andriesc, C. Căinap and V. Chiş, *Int. J. Mol. Sci.*, 2022, **23**, 5023; <https://doi.org/10.3390/ijms23095023>.
- 3 N. P. Lenzo, D. Meyrick and J. H. Turner, *Diagnostics*, 2018, **8**, 16; <https://doi.org/10.3390/diagnostics8010016>.
- 4 M. Richter and H. Zhang, *DNA Cell Biol.*, 2005, **24**, 271; <https://doi.org/10.1089/dna.2005.24.271>.
- 5 A. O. Fedotova, B. V. Egorova, G. Yu. Aleshin, L. S. Zamurueva, R. A. Aliev, G. A. Posypanova, A. B. Priselkova, A. V. Kolotaev, D. S. Khachatryan, V. N. Osipov and S. N. Kalmykov, *Mendeleev Commun.*, 2023, **33**, 469; <https://doi.org/10.1016/j.mencom.2023.06.009>.
- 6 H. Elnakat and M. Ratnam, *Adv. Drug Delivery Rev.*, 2004, **56**, 1067; <https://doi.org/10.1016/j.addr.2004.01.001>.
- 7 J. S. Appelbaum, N. Pinto and R. J. Orentas, in *Chimeric Antigen Receptor T-Cell Therapies for Cancer*, eds. D. W. Lee and N. N. Shah, Elsevier, 2020, pp. 137–163; <https://doi.org/10.1016/B978-0-323-66181-2.00011-1>.
- 8 F. Shen, J. F. Ross, X. Wang and M. Ratnam, *Biochemistry*, 1994, **33**, 1209; <https://doi.org/10.1021/bi00171a021>.
- 9 H. Wang, X. Zheng, F. G. Behm and M. Ratnam, *Blood*, 2000, **96**, 3529; <https://doi.org/10.1182/blood.2000.96.3529>.
- 10 W. Xia, A. R. Hilgenbrink, E. L. Matteson, M. B. Lockwood, J.-X. Cheng and P. S. Low, *Blood*, 2009, **113**, 438; <https://doi.org/10.1182/blood-2008-04-150789>.
- 11 H. M. de Visser, N. M. Korthagen, C. Müller, R. M. Ramakers, G. C. Krijger, F. P. J. G. Laféber, F. J. Beekman, S. C. Mastbergen and H. Weinans, *Cartilage*, 2018, **9**, 183; <https://doi.org/10.1177/194760351773073>.
- 12 A. Larenkov, M. Rakhimov, K. Lunyova, O. Klementyeva, A. Maruk and A. Machulkin, *Molecules*, 2020, **25**, 2712; <https://doi.org/10.3390/molecules25112712>.
- 13 S.-Q. Chen, X.-Y. Lu, L.-Y. Zhu, H. Zhu, R.-T. Li and R.-R. Ye, *Inorg. Biochem.*, 2024, **257**, 112596; <https://doi.org/10.1016/j.jinorgbio.2024.112596>.
- 14 K. A. Petrosova, A. S. Lunev, M. G. Rakhimov, A. E. Machulkin, N. S. Volkova, F. I. Vasilevich and A. A. Larenkov, *Nucl. Med. Biol.*, 2025, **142–143**, 108991; <https://doi.org/10.1016/j.nucmedbio.2024.108991>.
- 15 Z. Chai, C. Teng, L. Yang, L. Ren, Z. Yuan, S. Xu, M. Cheng, Y. Wang, Z. Yan, C. Qin, X. Han and L. Yin, *Carbohydr. Polym.*, 2020, **245**, 116527; <https://doi.org/10.1016/j.carbpol.2020.116527>.
- 16 L. M. Deberle, M. Benešová, C. A. Umbricht, F. Borgna, M. Büchler, K. Zhernosekov, R. Schibli and C. Müller, *Theranostics*, 2020, **10**, 1678; <https://doi.org/10.7150/thno.40482>.
- 17 V. J. Tschan, S. D. Busslinger, P. Bernhardt, P. V. Grundler, J. R. Zeevaart, U. Köster, N. P. van der Meulen, R. Schibli and C. Müller, *J. Nucl. Med.*, 2023, **64**, 1625; <https://doi.org/10.2967/jnumed.123.265524>.
- 18 S. M. Mahalingam, S. A. Kularatne, C. H. Myers, P. Gagare, M. Norshi, X. Liu, S. Singhal and P. S. Low, *J. Med. Chem.*, 2018, **61**, 9637; <https://doi.org/10.1021/acs.jmedchem.8b01115>.
- 19 C. Chen, J. Ke, X. E. Zhou, W. Yi, J. Brunzelle, J. Li, E.-L. Yong, H. E. Xu and K. Melcher, *Nature*, 2013, **500**, 486; <https://doi.org/10.1038/nature12327>.
- 20 M. Eder, T. Löhr, U. Bauder-Wüst, M. Reber, W. Mier, M. Schäfer, U. Haberkorn and M. Eisenhut, *J. Nucl. Med.*, 2013, **54**, 1327; <https://doi.org/10.2967/jnumed.112.114512>.

Received: 14th March 2025; Com. 25/7764