Electronic supplementary materials Mendeleev Commun., 2025, 35, 524-526

Protic additives in aprotic solvent:
a tool to improve sodium borohydride reductions of C—C bonds
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General Information

'H NMR and *C NMR spectra were recorded on a «Bruker AVANCE II 300» spectrometer at 300 and 75 MHz,
respectively, in CDCI; with tetramethylsilane as an internal reference standard and DMSO-ds. HRMS spectra were
obtained with a Bruker microTOF Il instrument (ESI, positive or negative ion modes, capillary voltage 4500 V).
Melting points were determined on a melting point apparatus Stuart SMP10.

Substrates 1a-c were commercially available reagents. Substrates 1d,5 19,52 1j,5% 1k,%* 11, 3a,%¢ 3b,5" 8b,%8 were
obtained according to the respective literature procedures. Substrates 1e,%° 1f,5° 1h,5!* 1i,51? and 8a were provided
by our colleagues Dr. Denis D. Borisov, Dr. Irina A. Borisova and Dr. Mikhail O. Zubkov.

Quantum chemical calculations were carried out using ORCA 5.0.4 software package.2—-4 CREST software
package was used to find the most stable conformations.S*35!* The calculation of ring-opening stages were
performed in the following manner. Geometry optimization and frequency calculations were performed using the
method r2SCAN-3c, while the electron energy was obtained at revDSD-PBEP86(D4)/aug-cc-
pVTZ/CPCM(methanol) level of theory.5>518 The calculations of the general mechanism was performed on
PBEO-D3(BJ)/def2-TZVP/CPCM(methanol) theory level.5® The Grimme’s dispersion corrections with Becke-
Johnson damping were utilized.>52! All ground stated had no imaginary frequencies, all transition states had one
imaginary frequency and the direction of the vibration corresponded to the reaction coordinate. The results of
modelling are presented in supplementary file as Cartesian coordinates. The energy values are given in kcal/mol.
The NICS(0), NICS(1), NICS(1),, values were obtained using PBEO(D4)/pcsSeg-2//r2SCAN-3 level of theory.
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Optimization of reduction conditions

The optimization of reaction conditions for the reduction of activated esters and nitriles was carried out on dimethyl
fumarate 1la as model substrate. The conversions and yields were determined via GC with cetane as internal
standard. It was discovered in advance that the reduction reaction rate was sufficient to carry out the reaction at
ambient temperature. Moreover, the addition of small amounts of protic solvents to the reaction mixtures was
efficient to prevent olygomerization processes. Water and trifluoroethanol gave most attractive results, however
water was chosen as attractive for industrial scale.

Table S1. Optimization of reduction of dimethyl fumarate 1a to dimethyl succinate 2a.

x eq. NaBH,, 1h

MeO2C A co,Me — MeOLcome
Solvent, additive, r.t.
1a 2a

Entry Reagent Solvent Additive Conversion, %*? NI;/IR yield,
%

1 3 eq. NaBH4 MeOH — 100¢ 9

2 3 eq. NaBH4 MeCN — 33¢ 22

3 3 eq. NaBH, MeCN 5% MeOH 75° 69

4 3 eq. NaBH4 MeCN 5% AcOH <5%' <5%

5 3 eq. NaBH, MeCN 5% F3CCH,OH 100 93

6 2 eq. NaBH,4 MeCN 5% F3CCH,OH 99 93

7 3 eq. NaBH, MeCN 5% H20 100 96

8 2 eq. NaBH, MeCN 5% H-0 98 90

9 1.5 eq. NaBH, MeCN 5% H,0 93 87

10 1 eg. NaBH. MeCN 5% H20 93 85

2 _ Determined as the ratio of integral intensity of all ester groups to that of the starting material’s ester groups; ® — determined as the ratio
of integral intensity of the product’s ester groups to that of all ester groups; ¢ — contaminated with products of one ester group’s reduction;
4 _ contaminated with oligomerization products; ¢ — contaminated with products of the addition of methanol to 1a; f - little or no reduction
reaction was detected.
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Synthetic Procedures

The reduction of activated alkenes at room temperature
To asolution of activated alkene 1 (1 mmol) in 15 ml of 5% water in acetonitrile (v/v) x eq. of sodium borohydride
were added. The reaction mixture was stirred at r.t. for y h, then diluted with water and extracted with ethyl acetate
3 times. The combined organic fractions were dried over sodium sulfate and evaporated.

Dimethyl succinate, 2a
As the substrate, the corresponding fumarate was used. The reaction time was 1 h, sodium borohydride amount
was 2.0 eg. No additional purification procedures needed, the final product (85% yield) was obtained as a colorless
oil. 'H NMR (300.13 MHz, CDCls) § 3.67 (s, 6H, OCHs), 2.61 (s, 4H, CH). The NMR spectrum corresponds to
previously reported.5?

Diethyl succinate, 2b

As the substrate, the corresponding fumarate was used. The reaction time was 2.5 h, sodium borohydride amount
was 2.5 eqg. No additional purification procedures needed, the final product (93% yield) was obtained as a colorless
oil. tH NMR (300.13 MHz, CDCls) 6 4.15 (g, J = 7.2 Hz, 4H, OCH,), 2.62 (s, 4H, CH,~CH), 1.26 (t, J = 7.1 Hz,
6H, CHs). The NMR spectrum corresponds to previously reported.5

Diisopropyl succinate, 2¢
As the substrate, the corresponding fumarate was used. The reaction time was 3 h, sodium borohydride amount
was 3.5 eq. The crude product was purified with column chromatography CHCI3/EtOAc 4:1 (v/v) on silica-gel,
the final product (87% yield) was obtained as a colorless oil. *H NMR (300 MHz, CDCls) § 5.02 (hept, J = 6.3 Hz,
2H, CH), 258 (s, 4H, CHy), 123 (d, J = 6.3 Hz, 12H, CHs). The NMR spectrum corresponds
to previously reported.5*

Trimethyl propane-1,2,3-tricarboxylate, 2d

The reaction time was 3 h, sodium borohydride amount was 5.0 eq. The crude product was purified with column
chromatography CHCIs/AcOH 200:1 (v/v) on silica-gel, the final product (39% yield) was obtained as a colorless
oil. *H NMR (300.13 MHz, CDCls) & 3.72 (s, 3H, CHCO,CHj3), 3.69 (s, 6H, CH,CO,CHj3), 3.28 (p, J = 6.7 Hz,
1H, CH), 2.79 (dd, J = 16.7, 6.8 Hz, 2H, CHy), 2.61 (dd, J = 16.7, 6.5 Hz, 2H, CH,). The NMR spectrum
corresponds to previously reported.S?

Dimethyl 2-(cyclohexylmethyl)malonate, 2e

The reaction time was 1 h, sodium borohydride amount was 1.5 eq. The crude product was purified with column
chromatography CHCIs/EtOAc 4:1 (v/v) on silica-gel, the final product (58% yield) was obtained as a colorless
oil. 'TH NMR (300 MHz, CDCls) & 3.73 (s, 6H, OCHs), 3.49 (t, J = 7.7 Hz, 1H, CH(CO:Me)), 1.81 (t, J = 7.3 Hz,
2H, CH-CH,-CH), 1.76 — 1.59 (m, 5H, cyclohexyl), 1.29 — 1.05 (m, 4H, cyclohexyl), 0.90 (q, J = 10.8, 10.1 Hz,
2H, cyclohexyl). The NMR spectrum corresponds to previously reported.5%

Dimethyl 2-benzylmalonate, 2f

The reaction time was 1 h, sodium borohydride amount was 1.5 eq. The crude product was purified with column
chromatography CHCIs on silica-gel, the final product (72% yield) was obtained as a colorless oil. *H NMR
(300 MHz, CDCls) 6 7.35 — 7.15 (m, 5H, Ar), 3.70 (s, 6H, OCHs), 3.68 (t, J = 7.8 Hz, 1H, CH>CH),
3.22 (d, J = 7.8 Hz, 2H, CH,). The NMR spectrum corresponds to previously reported.s?’

Dimethyl 2-(4-methoxybenzyl)malonate, 2g

The reaction time was 1 h, sodium borohydride amount was 1.5 eq. The crude product was purified with column
chromatography CHCI; on silica-gel, the final product (73% vyield) was obtained as white crystals.
'H NMR (300 MHz, CDCls) 6 7.11 (d, J = 8.6 Hz, 2H, Ar), 6.81 (d, J = 8.6 Hz, 2H, Ar), 3.78 (s, 3H, ArOCH;),
3.70 (s, 6H, CO.CHj3), 3.63 (t, J = 7.8 Hz, 1H, CH,—CH), 3.16 (d, J = 7.8 Hz, 2H, CH3). The NMR spectrum
corresponds to previously reported.5?
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Dimethyl 2-(4-cyanobenzyl)malonate, 2h

The reaction time was 1 h, sodium borohydride amount was 1.5 eq. The crude product was purified with column
chromatography CHCI; on silica-gel, the final product (90% vyield) was obtained as white crystals.
'H NMR (300 MHz, CDCl3)  7.58 (d, J = 8.1 Hz, 2H, Ar), 7.32 (d, J = 8.2 Hz, 2H, Ar), 3.71 (s, 6H, OCH3),
3.67 (t, J=7.8 Hz, 1H, CH>-CH), 3.28 (d, J = 7.7 Hz, 2H, CH>). The NMR spectrum corresponds to previously
reported.S?°

Dimethyl 2-(2,6-dichlorobenzyl)malonate, 2i

The reaction time was 1 h, sodium borohydride amount was 1.5 eq. The crude product was purified with column
chromatography CHCIs on silica-gel, the final product (78% yield) was obtained as white powder, m.p. 97-99°C.
'H NMR (300.13 MHz, CDCls) & 7.29 (d, J = 8.3 Hz, 2H, Ar), 7.12 (dd, J = 8.7, 7.4 Hz, 1H, Ar),
3.83(dd, J=8.1, 7.3 Hz, 1H, CH,—CH), 3.72 (s, 6H, OCH3), 3.57 (d, J = 7.7 Hz, 2H, CH,), 3C NMR (75.5 MHz,
CDCls) 8: 196.0 (CO,CHj3), 136.9 (C-Cl), 133.9 (Ar), 128.8 (Ar), 128.5 (Ar), 52.8 (OCH3s), 50.0 (CH—CH), 30.2
(CH2). HRMS Calc. for [C12H1204Cl>+H] 291.0185, found 291.0179.

2-Benzylmalononitrile, 2j

The reaction time was 1 h, sodium borohydride amount was 1.5 eq. The crude product was purified with column
chromatography CHCIs/AcOH 100:1 (v/v) on silica-gel, the final product (73% yield) was obtained as white
crystals. 'H NMR (300 MHz, CDCl3) & 7.46 — 7.29 (m, 5H, Ar), 3.91 (t, J = 6.9 Hz, 1H, CH>-CH),
3.29 (d, J = 6.9 Hz, 2H, CH,). The NMR spectrum corresponds to previously reported.S*°

2-(4-Nitrobenzyl)malononitrile, 2k

The reaction time was 1 h, sodium borohydride amount was 1.5 eq. The final product was crystallized in toluene
(60% vyield) as grey powder, *H NMR (300 MHz, CDCls) 6 8.30 (d, J = 8.7 Hz, 2H, Ar), 7.55 (d, J = 8.5 Hz,
2H, Ar), 4.03 (t, J = 6.6 Hz, 1H, CH,—CH), 3.41 (d, J = 6.6 Hz, 2H, CH,). The NMR spectrum corresponds to
previously reported.S3

5-Benzyl-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione, 2I

The reaction time was 1 h, sodium borohydride amount was 1.5 eq. When extracted, sulfuric acid 1M solution
in water phase is needed. No additional purification procedures needed, the final product (99% yield)
was obtained as white powder. *H NMR (300 MHz, CDCls) § 7.24 (dt, J = 6.7, 4.2 Hz, 3H, Ar), 7.03 (dd, J = 6.7,
2.9 Hz, 2H, Ar), 3.78 (t, ) = 4.8 Hz, 1H, CH»—CH), 3.47 (d, J = 4.8 Hz, 2H, CH>), 3.13 (s, 6H, N-CH3). The NMR
spectrum corresponds to previously reported.5%

Heptamethyl bicyclo[3.2.0]hept-2-ene-1,2,3,4,5,6,7-heptacarboxylate, 4

The reaction time was 1 h, sodium borohydride amount was 1.5 eq. The final product was crystallized in methanol
(54% vyield) as yellow crystals, mp = 136-137°C. *H NMR (300 MHz, CDClz) & 4.88 (s, 1H, =C-CH),
4.35 (d, J = 10.7 Hz, 1H, ®CH), 4.08 (d, J = 10.7 Hz, 1H, ®“'CH), 3.75 (s, 3H, O—CHs3), 3.67 (s, 3H, O—CHs),
3.66 (s, 3H, O—CHj3), 3.65 (s, 3H, O-CHj3), 3.63 (s, 3H, O-CHjs), 3.62 (s, 3H, O-CHg), 3.58 (s, 3H, O-CHa).
The NMR spectrum corresponds to previously reported.®

The reduction of cycloheptatriene derivatives into cyclopentadienyl anion 5
To asolution of either 3a or 3b (1 mmol) in 15 ml acetonitrile, 76 mg (2 mmol, 2 eq.) of sodium borohydride were
added. The reaction mixture was refluxed for 5 h, then diluted with water and extracted with ethyl acetate 3 times.
The combined organic fractions were dried over sodium sulfate and evaporated. The product was isolated by
crystallization from methanol.

Sodium pentakis(methoxycarbonyl)cyclopentadienide, 5
Yellow powder, *H NMR (300 MHz, [Ds]-DMSO) & 3.55 (s, 15H, O—CHj3). The NMR spectrum corresponds to
previously reported.S®
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The reduction of diarylcyclopropenones

To a suspension of 1,3-diarylcyclopropenone 8a or 9a (1 mmol) in 5 ml absoluted methanol sodium borohydride
(5 eq.) was gradually added while stirring. Then, the reaction mixture, gradually becoming orange, was stirred at
r.t. for 1 h, then diluted with water and extracted to dichloromethane 3 times. The combined organic fractions were
dried over sodium sulfate and evaporated.

1,3-Diphenylpropan-2-ol, 9a

Yellow oil, difficult to separate from its isomer, 10a. *H NMR (300 MHz, CHCls) & 7.38-7.30 (m, 10H, Ar), 4.08
(ddd, J=8.1, 4.8, 3.4 Hz, 1H, CH(OH)), 2.88 (dd, J = 13.7, 4.8 Hz, 2H, CHy), 2.77 (dd, J = 13.7, 8.1 Hz, 2H,
CH,). The NMR spectrum corresponds to previously reported.S3*

2,3-Diphenylpropan-1-ol, 10a

Yellow oil, difficult to separate from its isomer, 9a. *H NMR (300 MHz, CHClI3) & 7.24-7.05 (m, 10H, Ar), 3.77
(d, J = 5.6 Hz, 2H, CH,(OH)), 3.13-3.03 (m, 2H, Ph—CH,), 2.96 (dd, J = 24.4, 6.9 Hz, 1H). The NMR spectrum
corresponds to previously reported.S%

1,3-Bis(2,5-dimethylthiophen-3-yl)propan-2-ol, 9b

The crude product was purified with column chromatography CHCIs/EtOAc 4:1. The final product (78% yield)
was obtained as yellow oil. *H NMR (CDCls, 300 MHz, 8, m.x1.): 6.49 (c, 2H, Ar), 3.93 (M, 1H, CH), 2.65-2.59
(M, 4H, CHy), 2.38 (¢, 6H, Me), 2.29 (¢, 6H, Me). °C NMR (75 MHz, CDCl;) &: 135.8 (Ar), 133.7 (Ar), 132.3
(Ar), 127.3 (Ar), 72.6 (-CH>-CHOH), 35.9 (-CH,-CHOH), 15.2 (-CHa), 13.1 (-CHs). HRMS: Calc. for
[C15H200S,+Na] 303.0853; found 303.0848.
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Molecular modelling
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Cartesian coordinates

NaBH(OMe)s

O 0.849940000000  0.657433000000
B 0.107646000000 1.471293000000
H -0.622492000000 0.805706000000
O -0.603706000000 2.417607000000
O 1.072497000000  2.280854000000
C -1.476716000000  3.299624000000
H -1.917014000000 3.977015000000
H -0.959702000000  3.901852000000
H -2.290266000000 2.757212000000
C 1.630737000000 -0.380814000000
H 1.036068000000 -1.041517000000
H 2.474465000000 -0.006072000000
H 2.034390000000 -0.977060000000
C 1.348376000000  1.944197000000
H 0.429326000000 1.862908000000
H 1.972639000000 2.725070000000
H 1.887511000000  0.991554000000
Na 1.642203000000 2.822194000000
Trimethyl borate

O 0.605113000000 0.532782000000
B  0.318894000000  1.744602000000
O -0.704792000000 2.411135000000
O 1.061108000000  2.136265000000
C -1.444547000000  3.472902000000
H -2.407898000000  3.512054000000
H -0.937781000000  4.430230000000
H -1.622756000000  3.313879000000
C 1.721342000000 -0.217735000000
H 1.584828000000 -0.566090000000
H 2.641091000000 0.370669000000
H 1.816278000000 -1.082067000000
C 1.156175000000  3.450239000000
H 2.092460000000 3.514191000000
H 0.330339000000 3.667011000000
H 1.171866000000 4.196819000000
2,3-Diphenylcyclopropen-1-one (GS1)

C -2.559061000000 -0.401807000000
C -1.940930000000 -1.151949000000
C -2.845695000000 -0.184270000000
O -2.716829000000 -0.143749000000
C -3.639951000000 0.639504000000
C -3.685103000000 0.589810000000
C -4.420770000000 1.562847000000
C -4.506813000000 1.456013000000
C -5.244312000000 2.433613000000
C -5.288232000000  2.379785000000
H -3.075101000000 -0.128696000000
H -4.379468000000 1.596899000000
H -4.539696000000 1.412319000000
H -5.850954000000  3.152720000000
H -5.931274000000  3.057533000000
C -1.035630000000 -2.164510000000
C -0.266340000000 -2.871543000000
C -0.910515000000 -2.450212000000
C 0.618083000000 -3.845523000000
C -0.026298000000 -3.426323000000
C 0.738631000000 -4.123161000000
H -0.369059000000 -2.645933000000
H -1.510136000000 -1.905597000000
H 1.215102000000 -4.390620000000

0.836041000000
-0.145719000000
-0.884725000000
0.725516000000
-0.937717000000
0.073325000000
0.809632000000
-0.684497000000
-0.426679000000
0.309927000000
-0.335068000000
-0.284319000000
1.132606000000
-2.266485000000
-2.859587000000
-2.710642000000
-2.354675000000
1.206807000000

0.797168000000
0.229459000000
0.839952000000
-0.845024000000
0.267559000000
0.777095000000
0.407541000000
-0.798134000000
0.358705000000
-0.668374000000
0.407922000000
1.016322000000
-1.363482000000
-1.918682000000
-2.043979000000
-0.567227000000

0.725234000000
-0.306613000000
-0.621756000000

1.908188000000
-1.470218000000
-2.857270000000
-0.789371000000
-3.556140000000
-1.483558000000
-2.870773000000
-3.392316000000

0.292847000000
-4.638378000000
-0.945832000000
-3.420604000000
-0.774294000000

0.154504000000
-2.137077000000
-0.275519000000
-2.560756000000
-1.631814000000

1.209672000000
-2.856483000000
0.446122000000

H
H

IIIIITIITIOOOOOOIIIIIOOOOOOIOOOOOIIIIIIOOOOOOIIIIIOOOOOOITOOOO
w

0.069232000000  -3.647339000000
1.431121000000 -4.886777000000
Trans-2,3-diphenylcyclopropan-1-one
-0.535275000000 -0.075916000000
-1.256935000000 -1.207244000000
-1.805851000000  0.287210000000
0.433935000000  0.290752000000
-2.608785000000  0.450371000000
-1.948707000000  0.995409000000
-0.846689000000  1.280881000000
-3.218364000000  1.368050000000
-1.014091000000  1.915305000000
-3.383953000000  2.006520000000
-2.282440000000  2.280640000000
0.151828000000  1.014033000000
-4.080482000000  1.152461000000
-0.147521000000  2.132629000000
-4.377998000000  2.290275000000
-2.411297000000  2.780806000000
-1.940900000000 -2.252973000000
-2.299423000000 -2.050167000000
-2.250941000000 -3.471357000000
-2.962040000000  -3.040461000000
-2.910384000000 -4.463341000000
-3.269864000000 -4.251177000000
-2.057974000000 -1.114570000000
-1.973329000000 -3.638672000000
-3.233822000000 -2.867547000000
-3.144753000000 -5.405017000000
-3.784465000000 -5.025487000000
-0.870562000000 -1.526229000000
2,3-diphenylcyclopropan-1-one
-1.252153000000  0.396156000000
-0.907659000000 -0.734610000000
-2.166066000000  0.211865000000
-1.046159000000  0.979739000000
-1.989887000000  0.844938000000
-3.556119000000 -0.266412000000
-4.396648000000 -0.280877000000
-4.045957000000  -0.740467000000
-5.692821000000 -0.764130000000
-5.339873000000 -1.230178000000
-6.168021000000 -1.244565000000
-4.024665000000  0.087779000000
-3.417083000000 -0.726776000000
-6.332721000000 -0.766869000000
-5.704389000000 -1.597789000000
-7.180513000000 -1.623842000000
-1.096011000000 -2.133200000000
-0.872690000000  -2.497340000000
-1.529570000000 -3.098760000000
-1.078624000000 -3.807861000000
-1.733580000000 -4.406203000000
-1.509482000000 -4.763959000000
-0.537751000000 -1.751389000000
-1.715206000000 -2.816042000000
-0.902376000000  -4.080149000000
-2.071814000000 -5.148761000000
-1.671647000000 -5.786401000000
-0.132012000000 -0.574140000000
Zwitterion 12
-0.625048000000 -0.842071000000

C

-3.617392000000
-1.967201000000

-0.395326000000
-0.971770000000
-1.010431000000
0.202731000000
-0.292571000000
-2.300589000000
-3.105929000000
-2.739156000000
-4.327792000000
-3.958937000000
-4.758870000000
-2.775000000000
-2.116869000000
-4.942074000000
-4.286006000000
-5.711897000000
-0.182668000000
1.150683000000
-0.783946000000
1.858842000000
-0.072630000000
1.251008000000
1.645158000000
-1.819123000000
2.894101000000
-0.556277000000
1.808197000000
-1.938349000000

-0.153948000000
-0.998995000000
-1.279430000000
0.871594000000
-2.144557000000
-1.121182000000
-2.233502000000
0.095884000000
-2.135790000000
0.191536000000
-0.922938000000
-3.183696000000
0.978947000000
-3.011085000000
1.144164000000
-0.845193000000
-0.534656000000
0.789127000000
-1.441772000000
1.201349000000
-1.030998000000
0.293467000000
1.501324000000
-2.472474000000
2.235854000000
-1.744971000000
0.615279000000
-1.744038000000

1.220186000000
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0.420884000000
-1.810106000000
-0.528950000000

0.193375000000
-1.722066000000
-3.101960000000
-4.138028000000
-3.399736000000
-5.412941000000
-4.681902000000
-5.688125000000
-3.914362000000
-2.600724000000
-6.199681000000
-4.905690000000
-6.691105000000

1.726594000000
2.597252000000
2.193385000000
3.875469000000
3.475676000000
4.318141000000

2.242710000000

1.521194000000

4.534541000000

3.828866000000

5.323846000000

ransition state for cis-2

-0.749543000000
0.479797000000
-1.416889000000
-0.980487000000
0.466243000000
-1.400020000000
-2.097256000000
-2.606285000000
-2.265700000000
-3.268406000000
-2.919379000000
-3.425082000000
-2.473235000000
-1.887431000000
-3.661052000000
-3.043496000000
-3.942867000000
1.745773000000
1.929971000000
2.836748000000
3.165339000000
4.070664000000
4.238125000000
1.097569000000
2.698717000000
3.297778000000
4.905287000000
5.205118000000

-0.965243000000  0.255302000000
-0.376644000000  0.572932000000
-1.134832000000  2.443439000000
-0.635051000000 -0.751864000000
-0.122025000000 -0.477076000000
-0.214866000000  1.137090000000
0.266121000000  0.307370000000
-0.514659000000  2.483755000000
0.442629000000  0.799913000000
-0.337983000000  2.965640000000
0.140516000000 2.131821000000
0.495771000000 -0.729027000000
-0.882731000000  3.112341000000
0.814069000000  0.153892000000
-0.571698000000  4.000145000000
0.278749000000 2.519648000000
-1.486304000000  0.449142000000
-1.538101000000 -0.660942000000
-1.956466000000  1.695214000000
-2.037379000000 -0.533475000000
-2.456064000000  1.811363000000
-2.498327000000  0.704555000000
-1.177990000000 -1.620882000000
-1.910914000000  2.540719000000
-2.071799000000 -1.392999000000
-2.816441000000  2.770682000000
-2.890547000000  0.805421000000
,3-diphenylcyclopropan-1-one cleavage
-1.767283000000  0.236411000000
-1.752271000000 -0.494777000000
-0.980291000000 -0.754226000000
-1.933013000000  1.434488000000
-2.084080000000 -1.524883000000
-1.328079000000 -1.778912000000
0.265073000000 -0.505275000000
0.981765000000 -1.599357000000
0.793473000000  0.783958000000
2.180705000000 -1.412319000000
1.999194000000  0.962908000000
2.694595000000 -0.129957000000
0.581203000000 -2.598728000000
0.241987000000  1.634721000000
2.720254000000 -2.266479000000
2.399331000000  1.962712000000
3.635485000000  0.017754000000
-1.298969000000  0.022304000000
-0.936838000000  1.365742000000
-1.210376000000 -0.856120000000
-0.495856000000  1.804963000000
-0.777003000000 -0.408416000000
-0.415764000000  0.923893000000
-1.016443000000  2.052722000000
-1.485879000000 -1.896279000000
-0.218373000000  2.844462000000
-0.717415000000 -1.097430000000

-0.075134000000

1.276116000000
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