

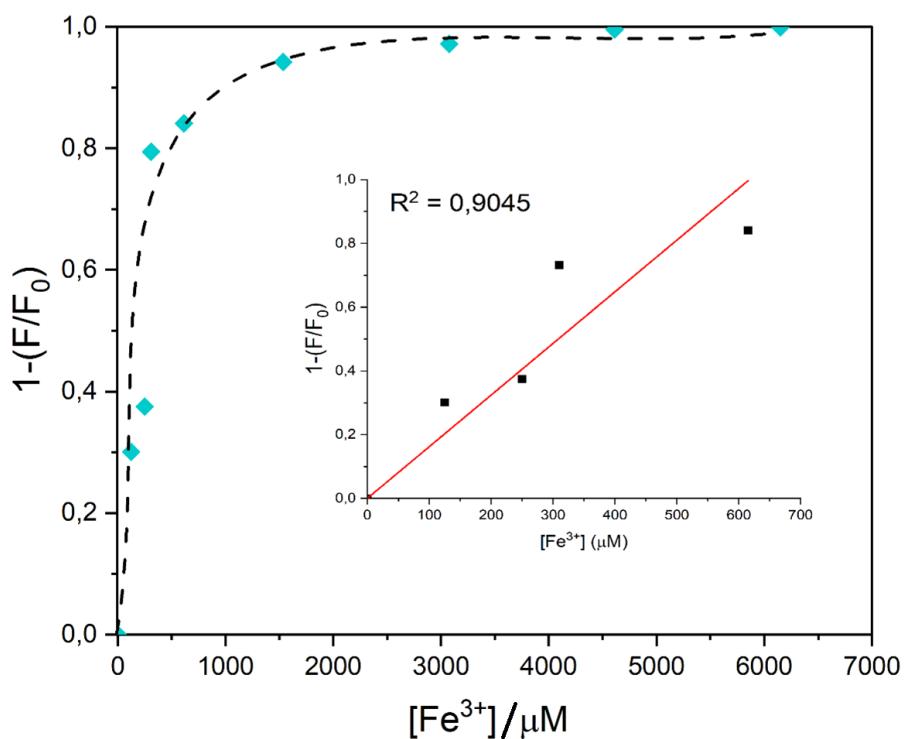
Photoluminescent hydrogel/carbon quantum dots nanocomposite for Fe^{3+} ions sensing: selectivity and recovery

Anastasia M. Borodina, Sergei V. Kostromin and Sergei V. Bronnikov

Evaluation of the limit of the Fe^{3+} ions detection (LOD)

For evaluation of the PL quenching, we used the Stern–Volmer equation:

$$\frac{F_0}{F} = 1 + K_{\text{SV}}[\text{Fe}^{3+}] = 1 + k_q \tau_0 [\text{Fe}^{3+}] \quad (\text{S1})$$


where F_0 and F are the PL intensity of PAA@CQDs in the absence and in the presence of the Fe^{3+} quencher, respectively,

K_{SV} is the Stern–Volmer quenching constant,

$[\text{Fe}^{3+}]$ is the Fe^{3+} ions (quencher) concentration in water solutions (μM),

k_q is the rate constant of the bimolecular quenching process, and τ_0 is the fluorescence lifetime in the absence of the Fe^{3+} ions.

Following Equation (S1), we plotted the PL quenching parameter, $1 - (F/F_0)$, against $[\text{Fe}^{3+}]$ (see Figure S1) and concluded that the PL quenching of PAA@CQDs increased with increasing $[\text{Fe}^{3+}]$. Furthermore, as follows from the inset, linearity between $1 - (F/F_0)$ and $[\text{Fe}^{3+}]$ could be clearly recognized when $[\text{Fe}^{3+}]$ varies from 0 to 600 μM , thus confirming validation of the Stern–Volmer equation. The limit of the Fe^{3+} ions detection (LOD) was estimated as $3\sigma/k = 0.763 \text{ nM}$, where $\sigma = 2.3 \times 10^{-4}$ is the standard deviation of 6 blank experiments and $k = 1.62 \times 10^{-3} \text{ l } \mu\text{mol}^{-1}$ is the slope of the calibration relationship.

Figure S1 Quenching parameter, $1-(F/F_0)$, as a function of $[Fe^{3+}]$ for PAA@CQDs. The inset shows its linearity when $[Fe^{3+}]$ varies from 0 to 600 μM according to Equation (S1).

Table S1 Comparison of the fluorescence probes for the detection of Fe^{3+} .

Sensors	Linear range (μM)	Limit of detection (μM)	Reference
N-doped CQDs	100–1000	0.3	[S1]
N-doped CQDs	0–110	0.177	[S2]
Hydrogel@CQDs	10–100	0.065	[S3]
Hydrogel@CQDs	1–1000	0.27	[S4]
Boron-dipyrromethene-based probe	0–22.4	0.16	[S5]
Metal doped GO	0.1–1	0.0345	[S6]
Hydrogel@CQDs	0–250	0.115	[S7]
Functionalized AA HG	0–50	1.1	[S8]
Eu^{3+} doped nanoparticles	10–90	0.0632	[S9]
PAA@CQDs	0–600	0.124	This work

References

S1 R. Fan, J. Xiang, P. Zhou, H. Mei, Y. Li, H. Wang and X. Liu, *Ecotoxicol. Environ. Saf.*, 2022, **233**, 113350; <https://doi.org/10.1016/j.ecoenv.2022.113350>.

S2 C. Lai, S. Lin, L. Xiong, Y. Wu, C. Liu and Y. Jin, *Diamond Relat. Mater.*, 2023, **133**, 109702; <https://doi.org/10.1016/j.diamond.2023.109702>.

S3 C. Cheng, M. Xing and Q. Wu, *J. Alloys Compd.*, 2019, **790**, 221; <https://doi.org/10.1016/j.jallcom.2019.03.053>.

S4 D. Zhang, X. Tian, H. Li, Y. Zhao and L. Chen, *Colloids Surf., A*, 2021, **608**, 125563; <https://doi.org/10.1016/j.colsurfa.2020.125563>.

S5 J. Leng, X. Lan, S. Liu, W. Jia, W. Cheng, J. Cheng and Z. Liu, *RSC Adv.*, 2022, **12**, 21332; <https://doi.org/10.1039/d2ra00818a>.

S6 C. Tewari, B. SanthiBhushan, A. Srivastava and N. G. Sahoo, *Sustainable Chem. Pharm.*, 2021, **21**, 100436; <https://doi.org/10.1016/j.scp.2021.100436>.

S7 Y. Yin, H. Lu, W. Song, X. Hu and C. Sun, *Anal. Lett.*, 2024, **57**, 1595; <https://doi.org/10.1080/00032719.2023.2262631>.

S8 X. Liu, Z. Chen, R. Gao, C. Kan and J. Xu, *Sens. Actuators, B*, 2021, **340**, 129958; <https://doi.org/10.1016/j.snb.2021.129958>.

S9 A. Dwivedi, M. Srivastava, A. Srivastava and S. K. Srivastava, *Spectrochim. Acta, Part A*, 2021, **260**, 119942; <https://doi.org/10.1016/j.saa.2021.119942>.