

Synthesis of nanosized HZSM-5 zeolite under microwave irradiation: effect of the Si/Al ratio on the morphology, textural and acidic properties

Alexander A. Karavaev, Kirill A. Cherednichenko, Evgenya. R. Koroleva, Alexander A. Panin and Leonid M. Kustov

Synthesis of nanosized ZSM-5 zeolites with different Si/Al ratios

To synthesize nanosized ZSM-5 zeolites directly in the proton form, a mixture containing tetraethylortosilicate Si(O-Et)_4 , (99%, SIGMA ALDRICH), distilled water, tetra-n-propylammonium hydroxide TPA-OH (1 M, MACKLIN) and aluminum isopropoxide Al(O-i-Pr)_3 (>98%, TOKYO CHEMICAL INDUSTRY) was used.

Tetra-n-propylammonium hydroxide and tetraethylortosilicate were dissolved in distilled water and intensively stirred at 75 °C for 6 h. Then aluminum isopropoxide was added to the resulting gel and stirred until the mixture was completely homogenized, but without subsequent aging. The resulting suspension was placed in a Teflon autoclave and subjected to microwave treatment in the M6 system (Preekem Instruments, China). Crystallization was carried out at 200 °C for 3 h. The obtained particles of nanosized zeolite, designated as nanoH-ZSM-5_X, (X is the Si/Al ratio equal to 46, 51, 72, 232 or 270, respectively) were isolated by centrifugation in an ultracentrifuge at 1800 rpm, washed with distilled water and dried at 170 °C for 2 h, then they were calcined at 550 °C for 6 h to remove the organic template.

Material characterization. Powder X-ray diffraction (XRD) data were collected at a scanning speed of 1.4 °/min on a Rigaku MiniFlex 600 (CuK_α radiation, $\lambda = 1.54187 \text{ \AA}$) diffractometer operated at 40kV and 15mA.

The shape and size of the particles, as well as the structure of the synthesized zeolite, were determined by scanning (Hitachi Regulus8230 field-emission scanning electron microscope (FE-SEM), operating voltage 5 kV) and transmission (JEOL JEM-2100, operating voltage 200 kV) electron microscopy.

Al and Si content was determined by the ICP-OES method. An aliquot of 0.05 g of sample was taken and transferred to microwave digestion vessel (Multiwave GO Plus, Anton Paar), into which a mixture of 4 ml HF, 1 ml H_2SO_4 , and 6 ml HNO_3 was added. After dissolving the sample, the resulting solution was stabilized with a saturated solution of boric acid to bind free hydrofluoric acid, and diluted with deionized water 18.2 $\text{M}\Omega \text{ cm}$ (Arium Comfort II, Sartorius) to a volume of 50 ml with further dilution with 2% solution of nitric acid. A blank sample was prepared in the same way. The samples were analyzed by the ICP-OES method on Agilent 5800 spectrometer.

The textural properties of the zeolite were determined by a low-temperature N_2 physisorption on an BELSORP Mini-X (MicrotracBEL, Japan) instrument. The specific surface area was calculated by the BET model. The total pore volume was calculated at $p/p_0 = 0.99$ from the adsorption branch of the isotherm. The micropore volume was calculated by the MP method. Mesopore size distribution, volume of mesopores – according to the Barrett–Joyner–Halenda (BJH) desorption curve; micropore size distribution – according to the MP adsorption curve; determination of the external surface area – according to the t-plot adsorption curve.

The acidic properties of the catalysts were evaluated by temperature programmed desorption of ammonia (NH_3 -TPD) on a USGA-101 chemisorption analyzer. Each sample was pretreated at 550 °C at 4 h in dry air, then 1 h at 550 °C in N_2 . After that the sample was cooled to room temperature and exposed to a N_2 – NH_3 flow (1 : 1 ratio) for 30 min. Subsequently, the physically adsorbed NH_3 on the sample was purged by N_2 at 100 °C. The signal of NH_3 desorption was recorded in the temperature range up to 650 °C with a heating rate of 8 °C min^{-1} .