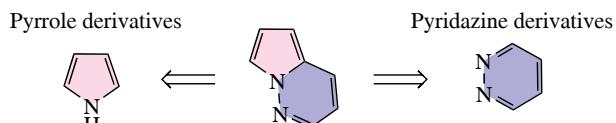


# Pyrrolo[1,2-*b*]pyridazines: synthesis and application perspective

Elena Yu. Mendogralo,<sup>a</sup> Roman O. Shcherbakov,<sup>a,b</sup>  
Ludmila N. Sorotskaja<sup>c</sup> and Maxim G. Uchuskin\*<sup>a,b</sup>

<sup>a</sup> Perm State University, 614990 Perm, Russian Federation.


E-mail: [mu@psu.ru](mailto:mu@psu.ru)

<sup>b</sup> Perm Federal Scientific Centre, Institute of Technical Chemistry,  
Ural Branch of the Russian Academy of Sciences, 614013 Perm, Russian Federation

<sup>c</sup> Kuban State Technological University, 350072 Krasnodar, Russian Federation

DOI: 10.71267/mencom.7749

Pyrrolo[1,2-*b*]pyridazines continue to attract significant interest due to their diverse biological activities. This review explores various synthetic approaches to constructing the pyrrolo[1,2-*b*]pyridazine scaffold and examines its applications. Covering key advancements in pyrrolo[1,2-*b*]pyridazine chemistry reported between 2008 and 2024, we highlight their role in the development of practically relevant compounds. By emphasizing recent progress in this field, we aim to inspire further research and innovation in the synthesis and application of these heterocyclic systems.



• synthetic methodology • substrate scope • mechanistic proposal

**Keywords:** pyrrole, pyridazine, pyrrolo[1,2-*b*]pyridazines, synthetic methodology, cyclization, 1,3-dipolar cycloaddition.

## 1. Introduction

Pyrrolo[1,2-*b*]pyridazines, a class of nitrogen-bridged heterocycles, are recognized as privileged scaffolds in both materials science and medicinal chemistry. In particular, they serve as potent inhibitors of kinase enzymes including Janus kinase 3 (JAK1/3),<sup>1</sup> interleukin-1 receptor-associated kinase (IRAK),<sup>2</sup> and poly(ADP-ribose)polymerase 1 (PARP-1),<sup>3</sup> which are promising targets for the treatment of rheumatoid arthritis.<sup>4</sup> Furthermore, these heterocycles display antimicrobial<sup>5,6</sup> and anticancer<sup>7</sup> activities and function as antagonists of corticotropin-releasing factor 1 (CRF1) receptors<sup>8</sup> (Figure 1). Additionally,

these compounds exhibit remarkable properties for optoelectronic applications, such as biosensors, lasers, electroluminescent materials, and semiconductor devices.<sup>9–11</sup> Given their multifaceted applications, the development of new synthetic methodologies to access pyrrolo[1,2-*b*]pyridazines remains a vital area of research.

The first review on pyrrolopyridazines was published in 2008.<sup>12</sup> Since then, two additional reviews have partially covered the synthesis of these compounds.<sup>13,14</sup> Over the years, more than 30 related publications have emerged, making it timely to consolidate and analyze the accumulated knowledge to drive



**Elena Yu. Mendogralo** studied chemistry at Perm State University and received her PhD in organic chemistry from Lomonosov Moscow State University in 2021 under the supervision of Prof. Alexander V. Butin and Dr. Maxim G. Uchuskin. She is currently a senior researcher at Perm State University. Her research focuses on developing novel synthetic methodologies for nitrogen-containing heterocycles and investigating pharmacologically active heterocyclic compounds.



**Roman O. Shcherbakov** was born in 2000 in Rezh, Sverdlovsk Region. In 2023, he graduated from Perm State University and began his graduate studies at the Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, under the supervision of Dr. Maxim G. Uchuskin. He is currently a junior researcher at Perm State University. His research focuses on the chemistry of heterocyclic compounds, with a particular emphasis on furans, pyrroles, and indoles.



**Ludmila N. Sorotskaja** graduated from Kuban State Technological University in 1982 and earned her PhD there in 1987. She is currently an associate professor at the same university. Her research focuses on the chemistry of furans and oxygenated furans.



**Maxim G. Uchuskin** received his PhD from Kuban State Technological University in 2013. He then joined Perm State University as a senior researcher and was promoted to leading researcher in 2020. His scientific interests focus on the development of novel synthetic methodologies, heterocyclic chemistry – particularly furan chemistry – and the synthesis of natural products and biologically active compounds.

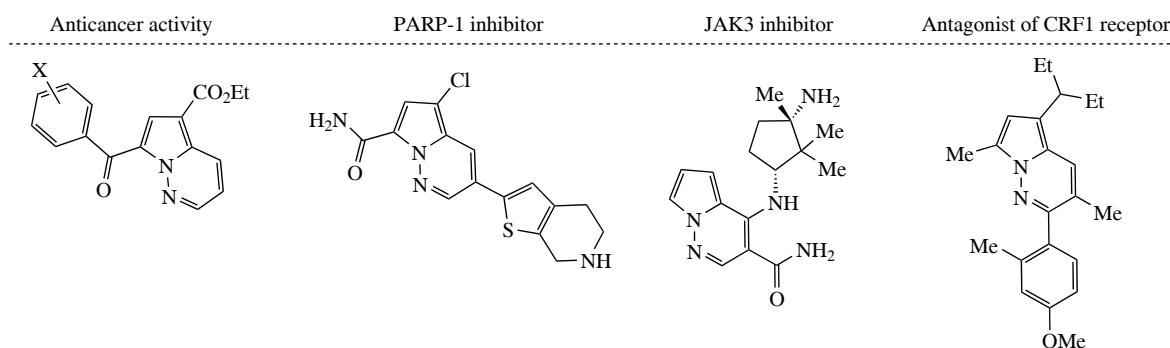
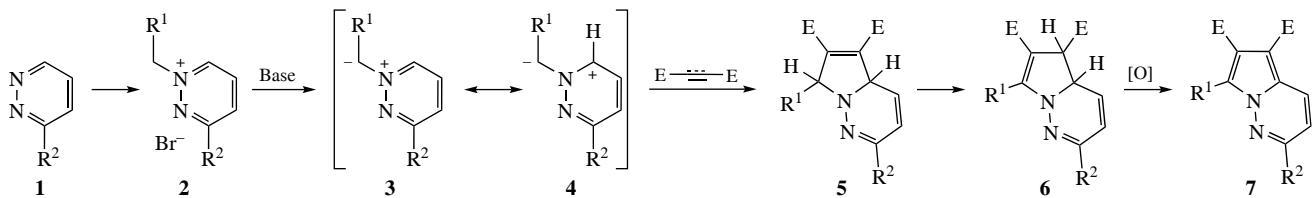




Figure 1 Represented examples of valuable molecules containing pyrrolo[1,2-b]pyridazine scaffold.

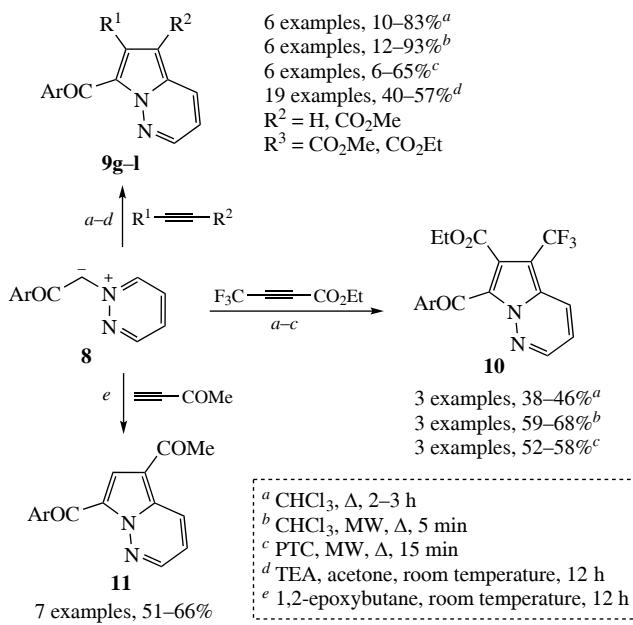


Scheme 1 Proposed mechanism for the formation of pyrrolo[1,2-b]pyridazines 7.

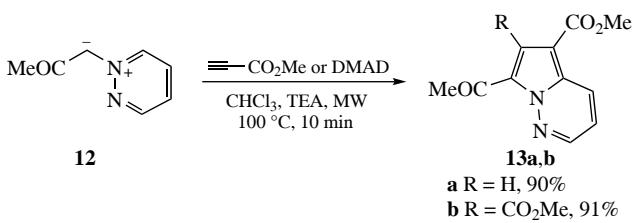
further research in this field. Synthetic approaches in this review are categorized into two main strategies based on the starting materials: (1) synthesis from pyridazines and (2) synthesis from pyrroles. This review also describes the physicochemical properties and biological profiles of pyrrolopyridazines, highlighting their potential applications across various fields.

## 2. Syntheses starting from substituted pyridazines

### 2.1. 1,3-Dipolar cycloaddition


One of the principal methods for synthesizing pyrrolo[1,2-b]pyridazines involves the 1,3-dipolar cycloaddition of pyridazinium ylides with dipolarophiles, including activated alkenes, alkynes, or their analogues. The reactive ylide is typically generated *in situ* from the corresponding salts 2 (Scheme 1).

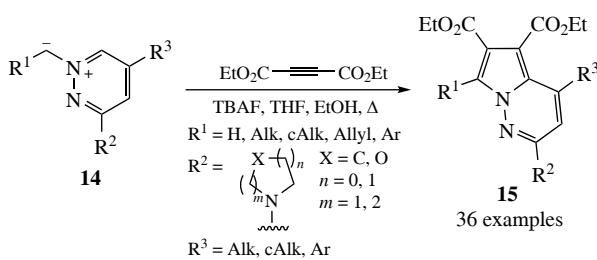
The reaction between diazinium ylides and acetylenic esters has been successfully utilized to synthesize a broad range of substituted pyrrolopyridazines 9, which exhibit notable *in vitro* activity against Gram-positive bacteria (Scheme 2).<sup>5</sup> Notably, incorporation of a trifluoromethyl group into the pyridazine core


of compound 10 has been shown to enhance *in vitro* antimicrobial activity.<sup>6</sup> In addition, microwave irradiation (MW) has been demonstrated to significantly accelerate these reactions, reduce energy consumption, and improve product yields.

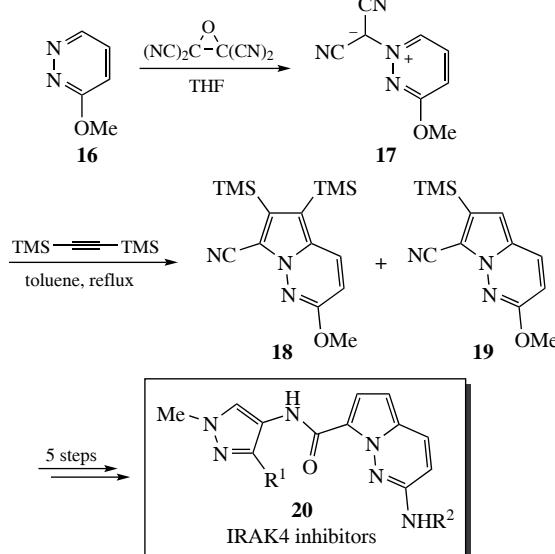
A series of pyrrolo[1,2-b]pyridazines 11 were synthesized by employing 1-butyn-3-one as an acetylenic dipolarophile in 1,2-epoxybutane at room temperature.<sup>15</sup> Remarkable, the 1,3-dipolar cycloaddition of various pyridazinium ylides with ethyl propiolate remains a widely adopted approach for constructing pyrrolo[1,2-b]pyridazine frameworks. In 2019, pyrrolopyridazines exhibiting potent antiproliferative activity were synthesized using a similar strategy.<sup>7</sup>

Luminescent pyridazines 13 were prepared *via* a similar reaction between diazinium ylide 12 and the corresponding dipolarophile (Scheme 3). A comparison between conventional heating and microwave irradiation revealed that MW significantly reduced reaction times and improved the yields of the target compounds.<sup>9</sup> Additionally, the first solid-phase synthesis of fluorescent pyrrolopyridazines using activated alkynes under both MW and conventional heating conditions has been reported.<sup>10,11</sup>




Scheme 2 Synthesis of 7-arylpvrrolo[1,2-b]pyridazines 9–11.

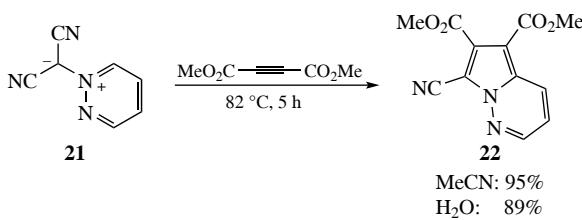



Scheme 3 Synthesis of 7-acetylpyrrolo[1,2-b]pyridazines 13.

Fox's research group identified a novel structural class of diacylglycerol acyltransferase 1 (DGAT1) inhibitors featuring a pyrrolopyridazine core. Substituted pyrrolopyridazines 15 were synthesized *via* a well-established sequence: *N*-alkylation of 3,5-disubstituted pyridazines with various halides yielded the corresponding salts, which were converted to ylides 14 and subsequently underwent 1,3-dipolar cycloaddition with diethyl acetylenedicarboxylate, to furnish the target compounds 15 (Scheme 4).<sup>16</sup>

Key pyridazinium ylides can also be prepared *via* the reaction of the corresponding pyridazine with tetracyanoethylene oxide. The subsequent reaction of the resulting ylide 17 with non-activated bis(trimethylsilyl)acetylene as a dipolarophile

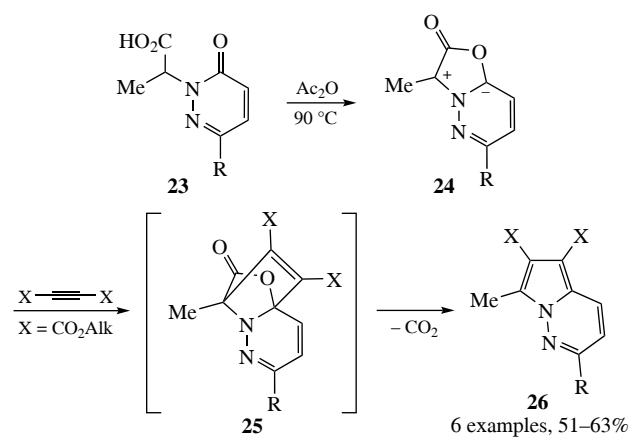



**Scheme 4** Synthesis of diethyl pyrrolo[1,2-b]pyridazine-5,6-dicarboxylates **15**.

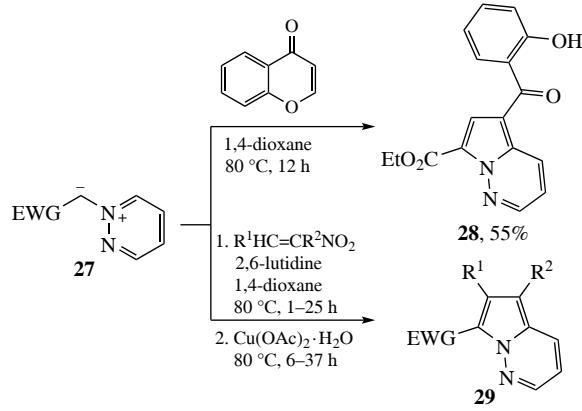


**Scheme 5** Synthesis of substituted pyrrolo[1,2-b]pyridazine-7-carbonitriles **18** and **19**.

yields a mixture of pyrrolo[1,2-b]pyridazines **18** and **19**. Further protodesilylation furnishes pyrrolo[1,2-b]pyridazine-7-carbonitrile, which serves as a crucial intermediate in the synthesis of a series of IRAK4 inhibitors **20** (Scheme 5).<sup>2</sup>


Dimethyl 7-cyanopyrrolo[1,2-b]pyridazine-5,6-dicarboxylate (**22**) was synthesized *via* the reaction of dicyano(pyridazin-1-ium-1-yl)methanide (**21**) with dimethyl acetylenedicarboxylate (DMAD) under ‘on-water’ conditions. The authors demonstrated that the efficiency of this reaction is contingent upon the solubility of the dipolarophile in water (Scheme 6).<sup>17</sup>

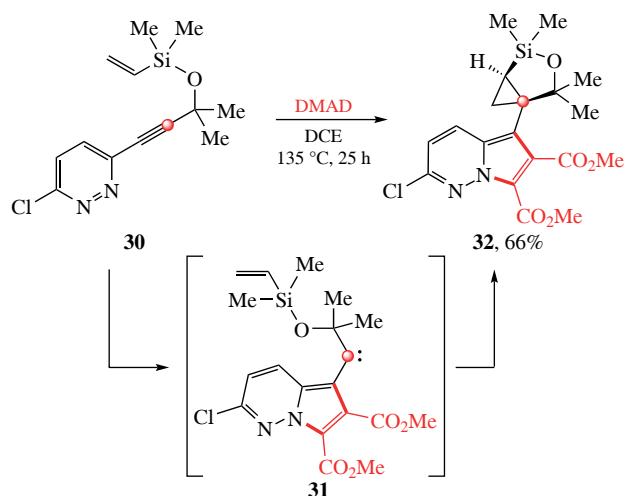



**Scheme 6** Synthesis of 7-cyanopyrrolo[1,2-b]pyridazine **22**.

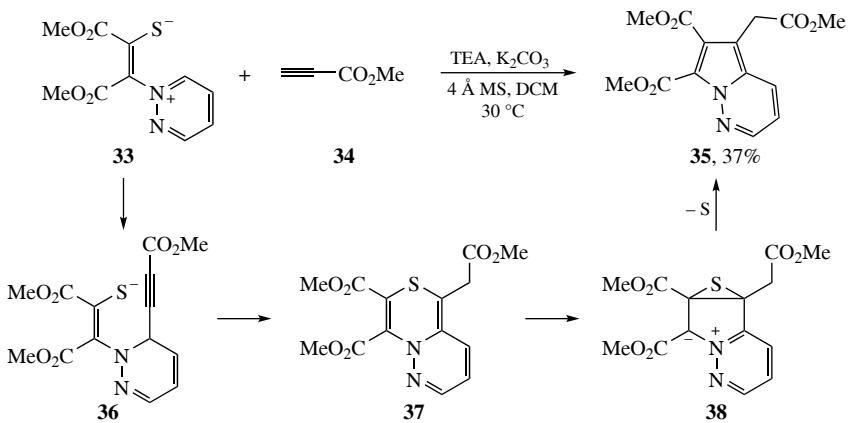
It has been demonstrated that azomethine ylides, generated *in situ* from the reaction of 2-[2(3*H*)-pyridazinon-1-yl]-propanoic acid (**23**) with acetic anhydride, act as effective 1,3-dipolar species (Scheme 7). Specifically, the reaction of the bicyclic mesoionic compound **24** with an acetylenic dipolarophile yields an unstable intermediate **25**, which undergoes decarboxylation under the reaction conditions, affording highly functionalized pyrrolo[1,2-b]pyridazines **26**.<sup>18</sup> More recently, by employing a similar synthetic strategy, the authors successfully synthesized antitumor pyrrolo[1,2-b]pyridazines from pyridazinone acids.<sup>19</sup>

In addition to alkynes, alkenes also serve as effective electron-deficient partners in 1,3-dipolar cycloaddition reactions. Notably,




**Scheme 7** Synthesis of highly functionalized pyrrolo[1,2-b]pyridazines **26**.




**Scheme 8** Synthesis of functionalized pyrrolo[1,2-b]pyridazines **28, 29**.

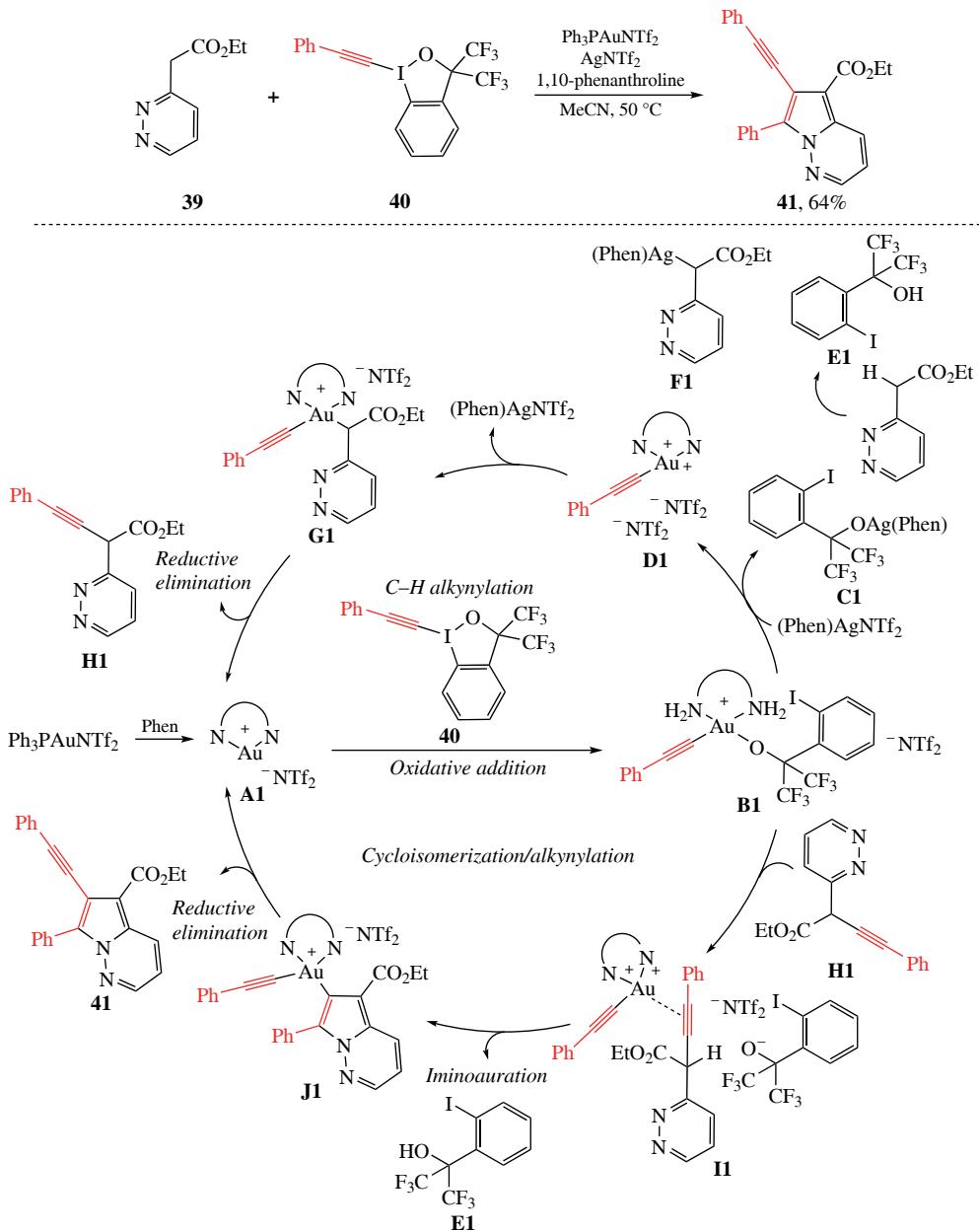
pyrrolo[1,2-b]pyridazine **28** was obtained in 55% yield from the reaction of pyridazinium salt **27** with 4*H*-chromen-4-one under heating in 1,4-dioxane (Scheme 8).<sup>20</sup> Furthermore, oxidative [3+2] annulation reactions between nitroalkenes and pyridazinium ylides **27**, mediated by Cu(OAc)<sub>2</sub>·H<sub>2</sub>O, provided access to functionalized pyrrolo[1,2-b]pyridazines **29**.<sup>21</sup>

An intriguing metal-free intramolecular cyclopropanation has recently been described.<sup>22</sup> Notably, alkynyl-substituted pyridazine **30** reacts with electron-deficient DMAD, generating a transient carbene **31** that undergoes intramolecular cyclopropanation, ultimately yielding highly functionalized pyrrolo[1,2-b]pyridazine **32** (Scheme 9). Furthermore, the authors demonstrated that this methodology could be applied to



**Scheme 9** Synthesis of 2,5,6,7-tetrasubstituted pyrrolo[1,2-b]pyridazine **32**.




Scheme 10 Synthesis of dimethyl pyrrolo[1,2-b]pyridazine-6,7-dicarboxylate 35.

the synthesis of related pyridazines without the construction of the cyclopropane ring.<sup>23</sup>

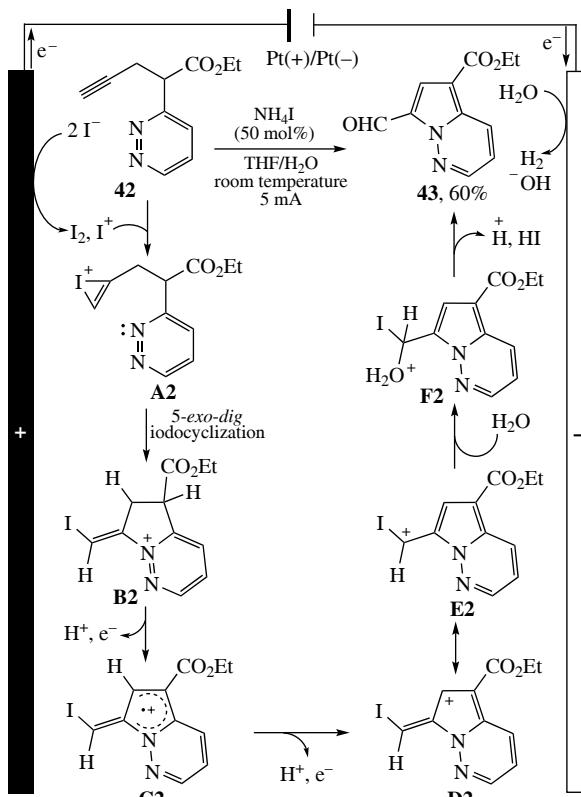
## 2.2. Formal [4+1] pathway

Versatile pyridinium 1,4-zwitterionic thiolates, readily generated from sulfur, DMAD, and pyridazine, have been utilized in the

synthesis of pyrrolo[1,2-b]pyridazines. A triethylamine-mediated cyclization of the 1,4-zwitterionic thiolate **33** with methyl propiolate **34** affords pyrrolo[1,2-b]pyridazine **35** under mild conditions, albeit in low yield (Scheme 10). The authors propose that the transformation proceeds *via* a formal [4+1] annulation, initiated by an acetylide attack on the starting



Scheme 11 Au/Ag-catalyzed cascade synthesis of ethyl pyrrolo[1,2-b]pyridazine-5-carboxylate 41.


pyridazine **33** to form intermediate **36**. A subsequent nucleophilic attack by sulfur on the activated acetylenic moiety generates pyridazino[6,1-*c*][1,4]thiazine **37**. Finally, spontaneous ring contraction and sulfur extrusion complete the formation of the desired pyrrolo[1,2-*b*]pyridazine **35**.<sup>24</sup>

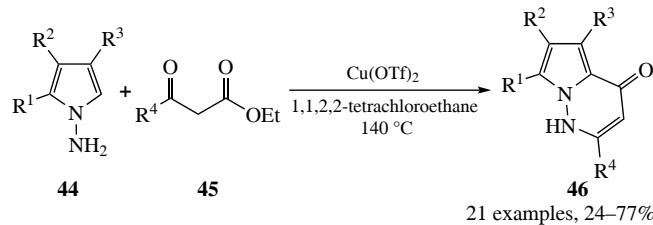
### 2.3. Au/Ag-catalyzed cascade

The cascade C(sp<sup>3</sup>)-H alkynylation/iminoauration of ethyl 2-(pyridazin-3-yl)acetate (**39**) with the hypervalent iodine(III) reagent **40** was achieved using a bimetallic Au/Ag-catalyst, affording ethyl pyrrolo[1,2-*b*]pyridazine-5-carboxylate **41** (Scheme 11). The proposed reaction mechanism involves two Au<sup>I</sup>/Au<sup>III</sup> catalytic cycles. In the first cycle, the Au<sup>I</sup> species **A1** undergoes oxidative addition with reagent **40** to form an Au<sup>III</sup> alkynyl complex **B1**. The transfer of an alkoxy anion from **B1** to Ag<sup>I</sup> initiates C-H functionalization, generating Ag<sup>III</sup> species **F1**. Subsequent transmetalation between the Au<sup>III</sup> complex **D1** and Ag<sup>I</sup> species **F1** yields Au<sup>III</sup> complex **G1**, which then undergoes reductive elimination to form 2-propargylpyridazine **H1** and regenerating the Au<sup>I</sup> species **A1**, thus completing the first catalytic cycle. In the second cycle, the Au<sup>III</sup> alkynyl complex **B1** activates the triple bond of 2-propargylpyridazine **H1**, facilitating an intramolecular nucleophilic attack by the pyridazine nitrogen. This step leads to cyclization of the pyrrolo[1,2-*b*]pyridazine core and simultaneous release of alcohol **E1**. A final reductive elimination completes the cycle, yielding the desired product **41**. The developed reaction was found to be highly adaptable to a range of diazaheterocyclic substrates, including those derived from pyrazine and pyrimidine.<sup>25</sup>

### 2.4. Electrochemical synthesis

In 2022, Guo and co-workers developed an environmentally friendly method for synthesizing ethyl 7-formylpyrrolo[1,2-*b*]pyridazine-5-carboxylate (**43**) via an electrochemically initiated intramolecular 1,2-amino oxygenation of alkyne **42** (Scheme 12). The reaction begins with the formation of an

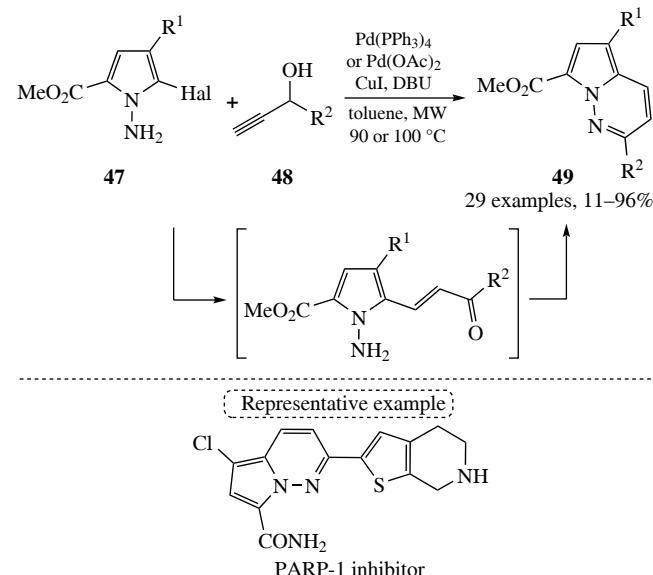



Scheme 12 Electrochemically-initiated formation of pyrrolo[1,2-*b*]pyridazine **43**.

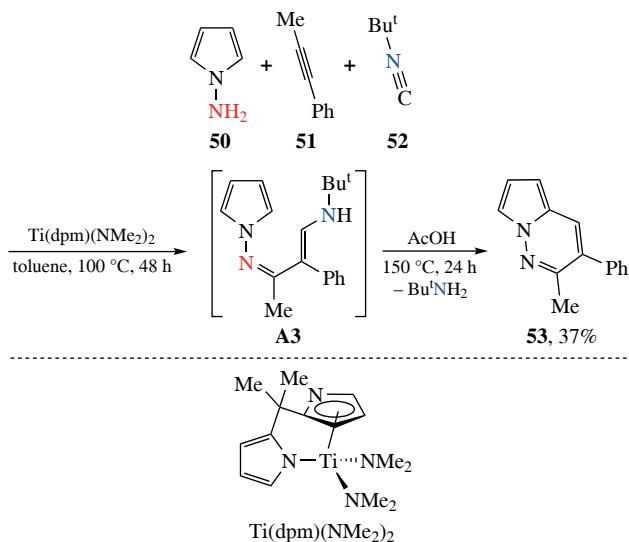
intermediate iodonium ion **A2**, which undergoes an intramolecular 5-*exo*-dig iodocyclization to yield a vinyl iodide intermediate **B2**. This intermediate then undergoes deprotonation, followed by anodic oxidation, generating a radical cation **C2**. A subsequent deprotonation and a second anodic oxidation step result in the formation of a carbocation **D2**, which underwent nucleophilic attack by H<sub>2</sub>O to form intermediate **F2**. Finally, protonation and HI elimination afford the desired product **43**.<sup>26</sup>

### 3. Syntheses starting from substituted pyrroles

#### 3.1. Metal-catalyzed approaches


The first Cu<sup>II</sup>-catalyzed tandem synthesis of 2-substituted pyrrolo[1,2-*b*]pyridazin-4(1*H*)-ones **46** via a Conrad–Limpach-type reaction was developed, starting from 1-aminopyrroles **44** and  $\beta$ -dicarbonyl compounds **45**. The resulting products **46** serve as valuable intermediates in the synthesis of various pyrrolo[1,2-*b*]pyridazines, with potential applications in drug development and materials science (Scheme 13).<sup>27</sup>




Scheme 13 Cu<sup>II</sup>-catalyzed tandem synthesis of pyrrolo[1,2-*b*]pyridazin-4(1*H*)-ones **46**.

In 2013, Chunhao's research group reported a domino coupling–isomerization–condensation sequence for the synthesis of pyrrolo[1,2-*b*]pyridazines **49** (Scheme 14). Utilizing Pd/Cu catalysts, they achieved the cyclization of (hetero)aryl propargyl alcohols **48** with 1-amino-2-halopyrroles **47** to furnish pyrrolo[1,2-*b*]pyridazines **49**. This cascade transformation proceeds via the formation of an enone intermediate, which then undergoes an intramolecular amine–ketone condensation to yield the target product **49**.<sup>28</sup> Notably, some of the synthesized pyrrolo[1,2-*b*]pyridazines exhibited potent PARP-1 inhibitory activity.<sup>6</sup>

Odom *et al.* reported an efficient Ti-catalyzed three-component coupling reaction of *N*-aminopyrrole (**50**),



Scheme 14 Synthesis of methyl pyrrolo[1,2-*b*]pyridazine-7-carboxylates **49**.

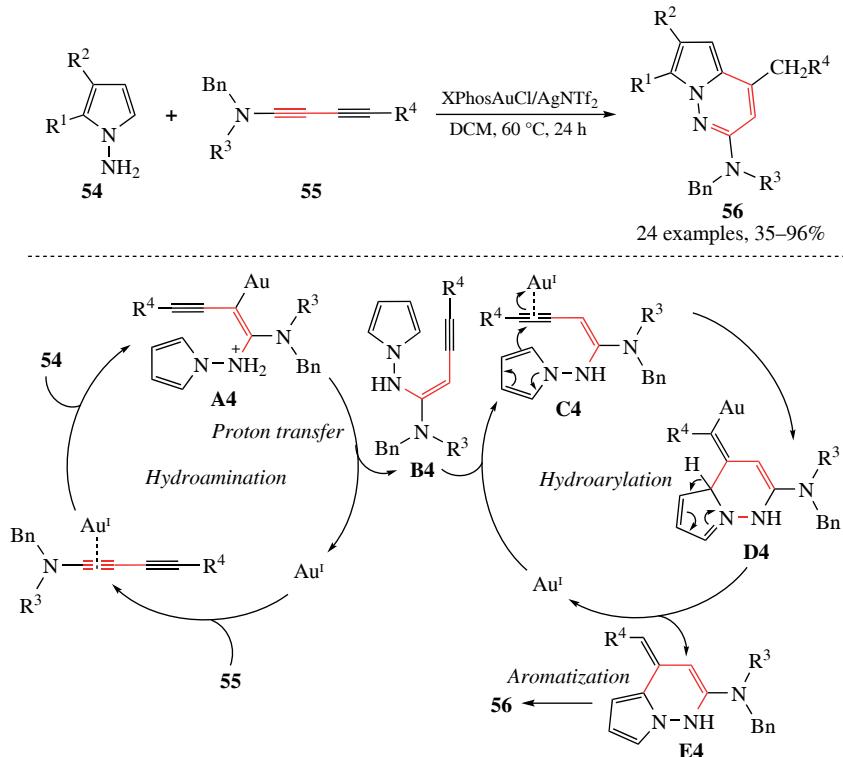


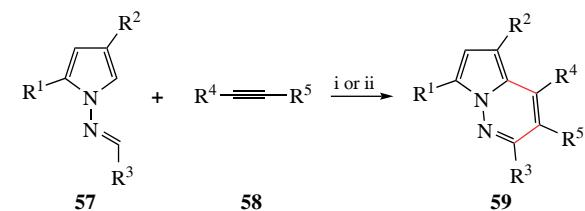
Scheme 15 Ti-catalyzed synthesis of pyrrolo[1,2-b]pyridazine 53.

1-phenylpropane (51), and *tert*-butylisocyanide (52) to afford 2-methyl-3-phenylpyrrolo[1,2-*b*]pyridazine (53) (Scheme 15). The reaction proceeds through catalytic hydroamination, cycloaddition and *tert*-butylamine elimination during aromatization.<sup>29</sup>

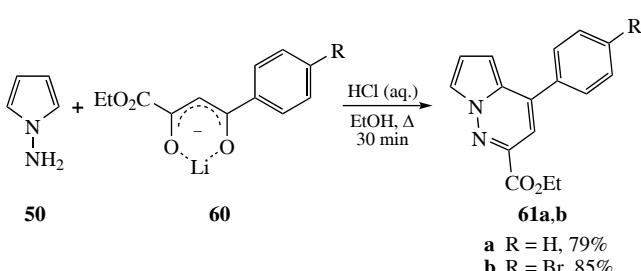
In 2023, Wang and colleagues reported an efficient Au<sup>I</sup>-catalyzed synthesis of 2-aminopyrrolo[1,2-*b*]pyridazines 56. This strategy involves a chemoselective Au<sup>I</sup>-catalyzed hydroamination/hydroarylation cascade, using 1-aminopyrroles 54 and non-symmetrical 1,3-diynamides 55. The reaction proceeds smoothly in the presence of XPhosAuCl/AgNTf<sub>2</sub> following the mechanism proposed in Scheme 16. Initially, the Au-catalyzed intermolecular hydroamination of 1,3-diynamide 55 with 1-aminopyrrole 54 yields an enyne A4, which undergoes proton transfer to form intermediate B4. Au-complexation of the remaining triple bond in C4 then promotes intramolecular hydroarylation via electrophilic aromatic substitution, generating

intermediate D4. Finally, aromatization furnishes 2-aminopyrrolo[1,2-*b*]pyridazine 56. Notably, these products exhibit fluorescence in both solution and solid states.<sup>30</sup>

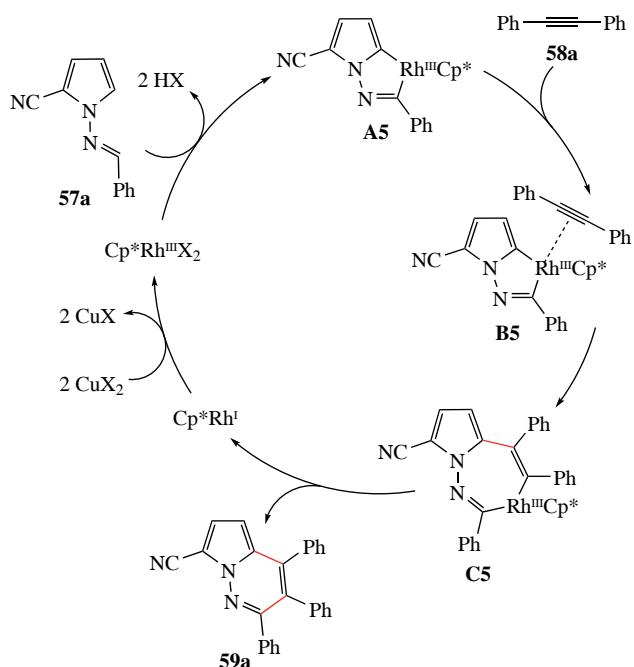

Ellman's research group reported a Rh<sup>III</sup>-catalyzed dual C–H activation in the reaction of aldehydrazones 57 with alkynes 58, affording pyrrolo[1,2-*b*]pyridazines 59 in good yields (Scheme 17).<sup>31</sup> The proposed mechanism proceeds *via* two concerted metalation–deprotonation steps to form a five-membered rhodacycle A5. Subsequent coordination of alkyne 58a with this intermediate generates the vinyl rhodium species C5. Finally, reductive elimination releases the target product 59a.


### 3.2. Acid-catalyzed cyclizations

Weigelt *et al.* described the acid-mediated condensation of benzoylpyruvates with various binucleophiles, affording fused heterocycles in good yields. The developed method demonstrates tolerance for 1*H*-pyrrol-1-amine (50) in an acid-catalyzed reaction proceeding *via* the formation of a Li chelate complex 60. The authors reported the formation of the corresponding ethyl pyrrolo[1,2-*b*]pyridazine-2-carboxylates 61 (Scheme 18).<sup>32</sup>


A straightforward method for synthesizing polysubstituted pyrrolo[1,2-*b*]pyridazines 64 from commercially available chalcones and 1*H*-pyrrol-1-amine derivatives 62 in the presence of *p*-toluenesulfonic acid (*p*-TSA) has been developed (Scheme 19).<sup>33</sup> The reaction commences with the hydrolysis and decarboxylation of carbamate A6, yielding alkenylimine C6 *via* condensation with a chalcone. Intermediate C6 then undergoes cyclization to form a 4,5-dihydropyrrolo[1,2-*b*]pyridazine *via* a nucleophilic attack on the pyrrole ring, accompanied by isopropyl group migration. Finally, aromatization is achieved upon refluxing with *p*-TSA.

In 2017, Hynes Jr. *et al.* developed a method for preparing an effective dual JAK1/3 inhibitor using 6-bromo-4-hydroxypyrrrolo[1,2-*b*]pyridazine-3-carbonitrile (67) as a key intermediate (Scheme 20). The 4-hydroxypyrrrolo[1,2-*b*]pyridazine 67 was synthesized from 1-aminopyrrole 65 and 1,1-diethoxypropionitrile 66 in the presence of *p*-TsOH,


Scheme 16 Au<sup>I</sup>-catalyzed synthesis of 2-aminopyrrolo[1,2-*b*]pyridazines 56.



i,  $[\text{Cp}^*\text{RhCl}_2]_2$ ,  $\text{Cu}(\text{OAc})_2$ , 1,4-dioxane,  $140^\circ\text{C}$ , 1 h, 17 examples, 39–88%;  
ii,  $[\text{Cp}^*\text{RhCl}_2]_2$ ,  $\text{AgOAc}$ ,  $\text{PivOH}$ ,  $\text{THF}$ ,  $120^\circ\text{C}$ , 16 h, 5 examples, 40–79%

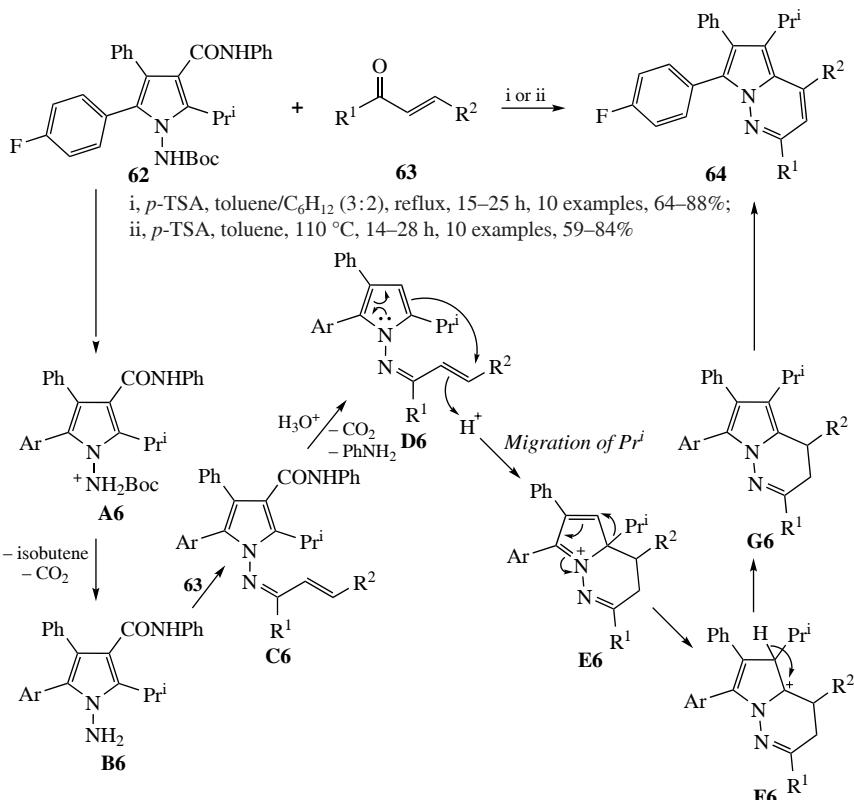


**Scheme 18** Synthesis of pyrrolo[1,2-b]pyridazines **61**.

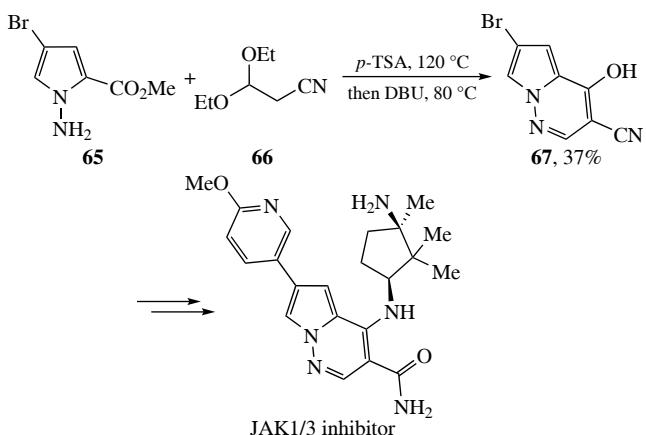
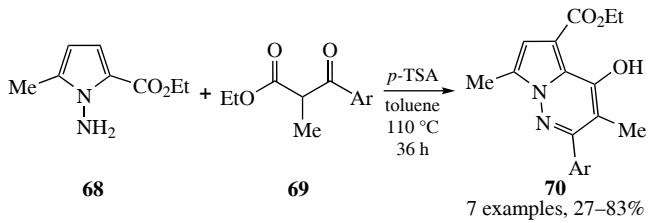
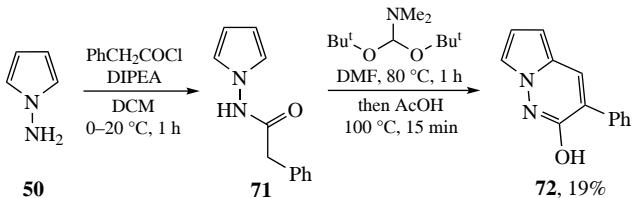


**Scheme 17** Rh<sup>III</sup>-catalyzed synthesis of pyrrolo[1,2-b]pyridazines **59**.

followed by treatment with 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU).<sup>34</sup> Subsequently, this method was further optimized to enhance the potency of JAK1/3 inhibitors.<sup>4</sup>


The condensation of 1-aminopyrrole **68** with  $\beta$ -ketoesters **69** in boiling toluene, catalyzed by *p*-TsOH, affords 4-hydroxypyrrrolo[1,2-b]pyridazines **70** (Scheme 21). These products serve as valuable intermediates for synthesizing potential antagonists of corticotropin-releasing factor 1 (CRF1) receptors.<sup>8</sup>

### 3.3. Cyclodehydration




3-Phenylpyrrrolo[1,2-b]pyridazin-2(1*H*)-one (**72**) was obtained in low yield from pyrrole **50** via *N*-acylation with phenylacetyl chloride, affording intermediate **71**, which subsequently underwent cyclization in the presence of 1,1-di-*tert*-butoxy-*N,N*-dimethylmethanamine (Scheme 22).<sup>35</sup>

### 4. Conclusions

This review provides an updated overview of the construction of pyrrolo[1,2-b]pyridazine scaffolds through two synthetic strategies, classified based on the starting materials: pyridazine or pyrrole derivatives. Owing to the significant practical importance of pyrrolopyridazine derivatives, substantial progress has been made in this field since 2008. As of 2024, the most prevalent approach for synthesizing pyrrolo[1,2-b]pyridazines involves the 1,3-dipolar cycloaddition of pyridazinium ylides with dipolarophiles. Several effective methodologies have been developed, including transition metal catalysis, acid catalysis, electrochemically initiated processes, and other strategies. Given the continued advancement of heterocyclic chemistry, pyrrolo[1,2-b]pyridazine-based



**Scheme 19** Acid-catalyzed cascade synthesis of polysubstituted pyrrolo[1,2-b]pyridazines **64**.

**Scheme 20** Synthesis of pyrrolopyridazines – JAK1/3 inhibitors.**Scheme 21** Synthesis of 4-hydroxypyrido[1,2-*b*]pyridazines **70**.**Scheme 22** Synthesis of pyrrolo[1,2-*b*]pyridazin-2(1*H*)-one **72**.

compounds are expected to maintain their prominence in both materials science and medicinal chemistry.

We acknowledge the Russian Science Foundation (grant no. 24-73-10099, <https://rscf.ru/en/project/24-73-10099/>) for the financial support. Access to the electronic resources and databases was provided with the support of the Ministry of Science and Higher Education of the Russian Federation (contract no. 0750-2025-0010).

## References

- J. J.-W. Duan, Z. Lu, B. Jiang, B. V. Yang, L. M. Doweyko, D. S. Nirschl, L. E. Haque, S. Lin, G. Brown, J. Hynes, Jr., J. S. Tokarski, J. S. Sack, J. Khan, J. S. Lippy, R. F. Zhang, S. Pitt, G. Shen, W. J. Pitts, P. H. Carter, J. C. Barrish and S. T. Wroblewski, *Bioorg. Med. Chem. Lett.*, 2014, **24**, 5721; <https://doi.org/10.1016/j.bmcl.2014.10.061>.
- J. Lim, M. D. Altman, J. Baker, J. D. Brubaker, H. Chen, Y. Chen, M. A. Kleinschek, C. Li, D. Liu, J. K. F. Maclean, E. F. Mulrooney, J. Presland, L. Rakhiolina, G. F. Smith and R. Yang, *Bioorg. Med. Chem. Lett.*, 2015, **25**, 5384; <https://doi.org/10.1016/j.bmcl.2015.09.028>.
- H.-Y. Xiang, J.-Y. Chen, X.-J. Huan, Y. Chen, Z.-B. Gao, J. Ding, Z.-H. Miao and C.-H. Yang, *Bioorg. Med. Chem. Lett.*, 2021, **31**, 127710; <https://doi.org/10.1016/j.bmcl.2020.127710>.
- S. H. Spergel, M. E. Mertzman, J. Kempson, J. Guo, S. Stachura, L. Haque, J. S. Lippy, R. F. Zhang, M. Galella, S. Pitt, G. Shen, A. Fura, K. Gillooly, K. W. McIntyre, V. Tang, J. Tokarski, J. S. Sack, J. Khan, P. H. Carter, J. C. Barrish, S. G. Nadler, L. M. Salter-Cid, G. L. Schieven, S. T. Wroblewski and W. J. Pitts, *ACS Med. Chem. Lett.*, 2019, **10**, 306; <https://doi.org/10.1021/acsmmedchemlett.8b00508>.
- R. M. Butnariu and I. I. Mangalagiu, *Bioorg. Med. Chem.*, 2009, **17**, 2823; <https://doi.org/10.1016/j.bmec.2009.02.028>.
- R. A. Tucaliuc, V. V. Cotea, M. Niculaua, C. Tuchilus, D. Mantu and I. I. Mangalagiu, *Eur. J. Med. Chem.*, 2013, **67**, 367; <https://doi.org/10.1016/j.ejmchem.2013.04.069>.
- L. Popovici, R.-M. Amarandi, I. I. Mangalagiu, V. Mangalagiu and R. Danac, *J. Enzyme Inhib. Med. Chem.*, 2019, **34**, 230; <https://doi.org/10.1080/14756366.2018.1550085>.
- T. Saito, T. Obitsu, H. Kohno, I. Sugimoto, T. Matsushita, T. Nishiyama, T. Hirota, H. Takeda, N. Matsumura, S. Ueno, A. Kishi, Y. Kagamiishi, H. Nakai and Y. Takaoka, *Bioorg. Med. Chem. Lett.*, 2012, **20**, 1122; <https://doi.org/10.1016/j.bmcl.2011.11.015>.
- C. Moldoveanu, D. Amariucai-Mantu, V. Mangalagiu, V. Antoci, D. Maftei, I. I. Mangalagiu and G. Zbancioc, *Molecules*, 2019, **24**, 3760; <https://doi.org/10.3390/molecules24203760>.
- G. N. Zbancioc, T. Huhn, U. Groth, C. Deleanu and I. I. Mangalagiu, *Tetrahedron*, 2010, **66**, 4298; <https://doi.org/10.1016/j.tet.2010.04.050>.
- G. Zbancioc and I. I. Mangalagiu, *Tetrahedron*, 2010, **66**, 278; <https://doi.org/10.1016/j.tet.2009.10.110>.
- F. Dumitrascu and D. G. Dumitrescu, *ARKIVOC*, 2008, (i), 232; <https://doi.org/10.3998/ark.5550190.0009.109>.
- A. T. Plieva, *Chem. Heterocycl. Compd.*, 2019, **55**, 199; <https://doi.org/10.1007/s10593-019-02441-5>.
- P. G. Sergeev and V. G. Nenajdenko, *Russ. Chem. Rev.*, 2020, **89**, 393; <https://doi.org/10.1070/RCR4922>.
- F. Dumitrascu, C. Draghici, M. T. Capriou, D. G. Dumitrescu and M. M. Popa, *Rev. Roum. Chim.*, 2009, **54**, 923; [https://revroum.lew.ro/wp-content/uploads/2009/RRCh\\_11\\_2009/Art%202008.pdf](https://revroum.lew.ro/wp-content/uploads/2009/RRCh_11_2009/Art%202008.pdf).
- B. M. Fox, K. Ito, K. Li, R. Choi, T. Inaba, S. Jackson, S. Sagawa, B. Shan, M. Tanaka, A. Yoshida and F. Kayser, *Bioorg. Med. Chem. Lett.*, 2010, **20**, 6030; <https://doi.org/10.1016/j.bmcl.2010.08.066>.
- R. N. Butler, A. G. Coyne, W. J. Cunningham and E. M. Moloney, *J. Org. Chem.*, 2013, **78**, 3276; <https://doi.org/10.1021/jo400055g>.
- M. T. Capriou, F. Dumitrascu and M. R. Caira, *Rev. Chim.*, 2008, **59**, 1242; <https://doi.org/10.37358/RC.08.11.2011>.
- B.-C. Ivan, S.-F. Barbuceanu, C. M. Hotnog, O. T. Olaru, A. I. Anghel, R. V. Ancuceanu, M. A. Mihaila, L. I. Brasoveanu, S. Shova, C. Draghici, G. M. Nitulescu and F. Dumitrascu, *Int. J. Mol. Sci.*, 2023, **24**, 11642; <https://doi.org/10.3390/ijms241411642>.
- K.-K. Dong and Q. Huang, *Tetrahedron Lett.*, 2019, **60**, 1871; <https://doi.org/10.1016/j.tetlet.2019.04.056>.
- V. A. Motornov, A. A. Tabolin, V. G. Nenajdenko and S. L. Ioffe, *ChemistrySelect*, 2021, **6**, 9969; <https://doi.org/10.1002/slct.202103189>.
- A. L. Guzman, A. N. Mann and T. R. Hoye, *J. Am. Chem. Soc.*, 2024, **146**, 28642; <https://doi.org/10.1021/jacs.4c10897>.
- Q. Xu and T. R. Hoye, *Nat. Chem.*, 2024, **16**, 1083; <https://doi.org/10.1038/s41557-024-01550-9>.
- B. Cheng, H. Li, S. Duan, X. Zhang, Y. He, Y. Li, Y. Li, T. Wang and H. Zhai, *Org. Biomol. Chem.*, 2020, **18**, 6253; <https://doi.org/10.1039/D0OB01398F>.
- C. Han, Y. Liu, X. Tian, F. Rominger and A. S. K. Hashmi, *Org. Lett.*, 2021, **23**, 9480; <https://doi.org/10.1021/acs.orglett.1c03667>.
- Q.-L. Yang, R.-C. Ma, Z.-H. Li, W.-W. Li, G.-R. Qu and H.-M. Guo, *Org. Chem. Front.*, 2022, **9**, 4990; <https://doi.org/10.1039/D2QO00904H>.
- C. Tan, H. Xiang, Q. He and C. Yang, *Eur. J. Org. Chem.*, 2015, 3656; <https://doi.org/10.1002/ejoc.201500422>.
- M. Wang, C. Tan, Q. He, Y. Xie and C. Yang, *Org. Biomol. Chem.*, 2013, **11**, 2574; <https://doi.org/10.1039/C3OB40157J>.
- S. Majumder, K. R. Gipson and A. L. Odom, *Org. Lett.*, 2009, **11**, 4720; <https://doi.org/10.1021/ol901855b>.
- J. Wang, J. Du and T. Wang, *Adv. Synth. Catal.*, 2023, **365**, 1088; <https://doi.org/10.1002/adsc.202300075>.
- A. D. Streit, A. J. Zoll, G. L. Hoang and J. A. Ellman, *Org. Lett.*, 2020, **22**, 1217; <https://doi.org/10.1021/acs.orglett.0c00186>.
- J. M. J. Nolsoe, A. Ertan, M. Svensson and D. Weigelt, *J. Heterocycl. Chem.*, 2010, **47**, 878; <https://doi.org/10.1002/jhet.448>.
- R. R. Sagyam, R. Buchikonda, J. P. Pitta, H. Vurimidi, P. R. Padi and M. R. Ghanta, *Beilstein J. Org. Chem.*, 2009, **5**, 66; <https://doi.org/10.3762/bjoc.5.66>.
- J. Hynes, Jr., H. Wu, J. Kempson, J. J.-W. Duan, Z. Lu, B. Jiang, S. Stachura, J. S. Tokarski, J. S. Sack, J. A. Khan, J. S. Lippy, R. F. Zhang, S. Pitt, G. Shen, K. Gillooly, K. McIntyre, P. H. Carter, J. C. Barrish, S. G. Nadler, L. M. Salter-Cid, A. Fura, G. L. Schieven, W. J. Pitts and S. T. Wroblewski, *Bioorg. Med. Chem. Lett.*, 2017, **27**, 3101; <https://doi.org/10.1016/j.bmcl.2017.05.043>.
- J. G. Kettle, S. Brown, C. Crafter, B. R. Davies, P. Dudley, G. Fairley, P. Faulder, S. Fillery, H. Greenwood, J. Hawkins, M. James, K. Johnson, C. D. Lane, M. Pass, J. H. Pink, H. Plant and S. C. Cosulich, *J. Med. Chem.*, 2012, **55**, 1261; <https://doi.org/10.1021/jm201394e>.

Received: 18th February 2025; Com. 25/7749