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Natural compounds play an exceptionally important role in the 
targeted synthesis of biologically active substances for medical 
purposes, which is due to their availability and high synthetic 
potential.1–6 A special place among such compounds is occupied 
by terpenoids, in particular terpene alcohols, which are wide-
spread in the plant kingdom and possess diverse and clearly 
expressed biological activity.7,8 Derivatives of terpene alcohols 
obtained often surpass native substances in therapeutic efficacy. 
In this regard, in this work a chemical modification of terpene 
alcohols was carried out by introducing sulfonamide groups into 
their structure, which are among the well-known pharmacophoric 
groups. It was recently shown9 that the sulfonamide derivative 
of cryptopleurin, a known antitumor and antiviral substance, 
exhibited 2–3 times greater activity against cancer cells than 
the original natural compound. In addition, improved pharmaco-
kinetic properties, including higher clearance, longer biological 
half-life, and higher bioavailability, when taken orally, of this 
derivative compared to its parent natural product, have been 
noted. Potent inhibitors of butyrylcholinesterase, which probably 
plays an important role in Alzheimer’s disease, have been 
obtained by synthesizing the sulfonamide derivatives of anthofin 
and cryptopleurin.10,11 Recently, sulfonamides have been 
increasingly used in the development of multi-target drugs.12

In this work, we obtained a series of N-(2-aryl-2-terpenyl-
oxyethenyl)sulfonamides whose molecules contained two linked 
pharmacophoric terpenyloxy and ethenylsulfonamide groups. 
The target compounds were prepared by the reaction of terpene 
alcohols 1 with 4-aryl-1-arylsulfonyl-1,2,3-triazoles 2 (Scheme 1). 

The reactions represent the insertion of an enamide group at the 
O–H bond using rhodium azavinylcarbenes (a-imino 
carbenoids), which arise from 4-aryl-1-sulfonyl-1,2,3-triazoles 
upon heating in the presence of rhodium pivalate. Metal 
complexes of azavinylcarbenes are known to be reactive 
intermediates that are active in the formation of various carbo- 
and heterocycles, as well as unique acyclic nitrogen-containing 
compounds.13 In particular, they undergo insertion reactions at 
the X–H bond (X = O, N), which is used in the synthesis of a 
wide range of compounds.14 Thus, when studying these reactions 
involving alcohols, it was established that compounds were 
unstable upon isolation when ethanol was used as the reactant. 
However, when using secondary or tertiary alcohols (2-propanol, 
1-phenylethanol, 1-adamantol, p-menthol), stable O–H 
insertion products, (2-alkoxy-2-phenylvinyl)arylsulfonamides, 
were obtained.14 In other works,15–17 propargyl, benzyl, allyl, 
furfuryl and other alcohols were also included in the range of 
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alcohols studied, and it was found that in most cases the O–H 
insertion reactions were accompanied by rearrangements. 

In our previous works,18,19 we studied the NH-insertion 
reaction of 1-sulfonyl-1,2,3-triazoles with primary anilines. 
Herein, we turned to other available substrates such as secondary 
terpene alcohols, differing in the structure of the carbon 
framework: p-menthol 1a, allobetulin 1b and isoborneol 1c. The 
starting 4-aryl-1-sulfonyl-1,2,3-triazoles 2a–e were obtained by 
a known method20 from the corresponding sulfonyl azides and 
alkynes under catalysis by copper(i) thiophene-2-carboxylate in 
toluene.

The reactions of terpene alcohols 1 with triazoles 2 were 
carried out in the presence of rhodium(ii) pivalate under argon 
at 75 °C for 30–60 min (see Scheme 1). The reaction mixtures 
were subjected to column chromatography on silica gel. In all 
the reactions studied, the main products, according to 1H NMR 
spectroscopy, were N-(2-aryl-2-terpenyloxyethenyl)sulfon-
amides 3. Unfortunately, of the 15 compounds obtained, only 
four (3a,j–l) were stable when stored under normal conditions 
(room temperature, hermetically sealed package). It is noteworthy 
that compounds 3j–l contain 4-bromophenyl substituent in 
position 2 at the sp2-hybridized carbon atom. The other O–H 
insertion products are noticeably decomposed, probably due to 
hydrolysis, as evidenced by the appearance of signals in the 
1H  NMR spectra that do not belong to arylethenylsulfon- 
amides 3 when they are dissolved in CDCl3 or DMSO-d6.

It should be noted that the reactions of terpene alcohols 1 with 
triazoles 2 proceed with a high degree of stereoselectivity14 
providing Z-configuration of the alkenyl fragment, which was 
confirmed by the {1H–1H}-NOESY experiments.

The structures of compounds 3 (47–89% yields) were 
confirmed using mass spectrometry and 1H and 13C  NMR 

spectroscopy (when possible). The 1H and 13C  NMR spectra 
contain signals for protons and carbon atoms of the terpenoid 
framework and the arylsulfonyl group with practically the same 
chemical shift values as in the starting reactants. The 1H NMR 
spectra also contain signals for the alkenyl proton (dH  5.91–
6.23 ppm) and the NH group proton (dH 6.38–6.63 ppm), and the 
13C  NMR spectra show signals for the ethylene group carbon 
atoms: O–C= (dC 143–145 ppm) and =C–NH (dC 109–115 ppm).

To transform unstable compounds 3 into stable analogs that 
do not contain the C=C bond, we hydrogenated some of their 
representatives 3a–g in a methanol solution (or a methanol–THF 
mixture for allobetulin derivatives) at 50 °C under a constant 
flow of hydrogen in the presence of Pd/C as a catalyst 
(Scheme  2). Crystalline N-(2-aryl-2-terpenyloxyethyl)sulfon-
amides 4a–g were obtained in 31–97% yields. The emergence in 
these compounds of a new chiral atom at C2 compared to the 
initial sulfonamides 3 is the cause for the formation of two dia-
stereomers in approximately equal quantities, which is manifested 
by the doubling of all signals in the NMR spectra of the products. 
One of these compounds, N-(2-p-menthyloxy-2-phenylethyl)-
sulfonamide 4a, was obtained as an individual diastereomer by 
recrystallization from a mixture of light petroleum and ethyl 
acetate (20 : 1). The structures of compounds 4 were established 
by mass spectrometry and 1H and 13C  NMR spectroscopy. In 
particular, the 1H NMR spectra contain signals for protons of 
the CH2N (dH 3.07–3.19 ppm), Cterp.HO (dH 2.74–2.98  ppm), 
ArCHO (dH 4.33–4.52  ppm), and NH (dH 4.47–4.88  ppm) 
groups, while the 13C   NMR spectra do not contain olefinic 
signals but those for a carbon of the ArCHO group (dC  75–
86  ppm). Ethylsulfonamides  4 can be stored without visible 
changes for several months.

Preliminary studies of the biological activity of the synthesized 
N-(2-aryl-2-terpenyloxyethyl)sulfonamides 4a–g (Table  1) 
revealed high antibacterial activity of compounds 4a and 4c 
against Staphylococcus aureus, which was several times greater 
than the activity of the known drug sulfamethoxazole. In 
addition, the cytotoxic activity of compounds 4 (concentration 
30 μmol, exposure 72 h, control – etoposide) against breast 
cancer cells (SK-BR-3), prostate adenocarcinoma (PC-3), lung 
carcinoma (A549), colorectal cancer cells (HCT116), melanoma 
cells (A375), and lung fibroblast cells (WI-26 VA4) was studied. 
All tested substances, with the exception of 4e, exhibited 
moderate activity against cancer cells with less effect on normal 
cells (WI-26 VA4).

In conclusion, a series of N-(2-aryl-2-terpenyloxyethenyl)-
sulfonamides and their hydrogenation products, N-(2-aryl-2-
terpenyloxyethyl)sulfonamides, combining two pharmacophoric 
groups, terpenyloxy and sulfonamide, was synthesized by the 
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reaction of terpene alcohols with 1-sulfonyl-1,2,3-triazoles. 
Some of the products, according to preliminary data, exhibit 
high antibacterial and moderate cytotoxic activity, which makes 
them promising for further studies.
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Table  1  Results of the study of biological activity of compounds 4a,c–g.a

Compound MICb/mg ml–1
Cell viability (%)

SK-BR-3 PC-3 A549 HCT116 A375 WI-26 VA4

4a 1 57 58 61   50 39   27
4c 1 26 46 40   41 74   41
4d not active 54 49 46   46 72   82
4e not active 88 88 91 105 99 105
4f not active 29 46 27   76 77   91
4g not active 54 43 39   73 60 113

a The substance 4b did not dissolve in aqueous DMSO. b Minimum inhibitory concentration, against S. aureus.
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