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Appendix 1. Data extraction

ChEMBL

For 77,932 documents from version 32 of the ChEMBL database, datasets were loaded consisting of ChEMBL
ID, PubMed ID, DOI, article title, abstract, journal title where the article was published, first and last page, year
of publication, and authors. The number of references was extracted using the Crossref API. MEDLINE
publication types were loaded from the PubMed database. For 5,357 documents, a unified publication type was
present, and for 48,908 (62.76%), there was a mention of at least one MEDLINE type. ChREMBL data are regularly
extracted from seven major journals: ACS Med Chem Lett, Bioorg Med Chem, Bioorg Med Chem Lett, Eur ] Med
Chem, J Med Chem, J Nat Prod, and MedChemComm. The share of publications from these journals in version
32 of ChEMBL is 94.30%. The remaining 5.7% of data were extracted from more than 200 journals.

PubMed

To supplement the ChEMBL data, a set of documents was loaded, including 8,689 publications from PubMed,
extracted from the seven main journals used by ChREMBL, and having a similar set of MEDLINE publication types
as the 5,357 documents from the previous chapter (the full list of publication types is presented in
all pubtupes.xlsx). Additionally, data on the number of references were loaded using the Crossref API
(pubmed reference.csv). The merging of annotated data from ChEMBL and PubMed contained in the seven main
journals, followed by the removal of duplicates, left about 8,676 documents in the training set.
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Appendix 2. Data preprocessing

Text preprocessing

To train models on texts (where a text refers to the combination of the publication title and abstract), we used
various natural language processing approaches. The TF-IDF method requires thorough preprocessing of texts.
Similar to the bag-of-words model, this model represents a document as a set of words, ignoring their order.
However, unlike the bag-of-words model, TF-IDF considers the frequency of word occurrences in documents,
allowing for more accurate weighting of their significance in the context of the entire corpus. Therefore, to use
this approach, stop words (prepositions, conjunctions, articles, etc.) should be removed. Additionally, various
HTML tags, accented characters, punctuation marks, and other symbols, numbers, extra spaces should be removed,
words should be converted to lowercase, and lemmatization should be performed.

The stop words set was taken from the nltk.corpus package. HTML tags were removed using the BeautifulSoup
library. Accented characters were replaced using the unidecode library. Punctuation marks were removed using
the string library. Numbers were removed using regular expressions and the re library. Text lemmatization was
performed using WordNetLemmatizer from the nltk library. When using the FastText model, text preprocessing
included the same steps.

For BERT models, empty texts were replaced with the “[MASK]” token. The procedure for obtaining embeddings
using BERT models was the same. The tokenizer was set up using AutoTokenizer from the transformers library,
and the pre-trained model was set up using AutoModel. All models and tokenizers are available on the Hugging
Face platform. The DistilBERT model was set up from distilbert/distilbert-base-uncased, PubmedBERT from
neuml/pubmedbert-base-embeddings, BioBERT from dmis-lab/biobert-base-cased-v1.1, and BioMed-RoBERTa
from allenai/biomed roberta base. Each text was split into sentences, after which the tokenizer processed the array
of sentences, adding special tokens indicating the beginning and end of a sentence, as well as padding tokens.

Then, using the pre-trained model, CLS tokens of the sentences were extracted from the last hidden layer with a
length of 768. To obtain the text embedding, the CLS tokens were averaged.

Categorical data preprocessing

Since the ChREMBL data are mainly extracted from seven journals, with only 5.7% of documents obtained from
approximately 200 other journals, the journals were represented as a vector of length 7 using one-hot encoding. If
an article did not belong to any of the seven journals, the one-hot vector for that article was a zero vector.

Numerical data preprocessing

Page Transformation

In the page data, the issue number was often indicated. In such cases, the difference between the first and last
pages was zero. These values were replaced with empty values. After replacement, the number of pages was
transformed to the natural logarithm of the number of pages plus one.

Author Count Transformation
The number of authors was transformed to the natural logarithm of the number of authors plus one.

Reference Count Transformation

After extracting the data, zero reference values were replaced with empty values, as most publications with zero
references actually had references. The number of references was transformed to the natural logarithm of the
number of references plus one.
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Appendix 3. Machine learning techniques

SVM (Support Vector Machine)

A support vector machine (SVM) is a supervised machine learning algorithm designed to classify data by
identifying an optimal hyperplane or decision boundary that maximizes the margin between distinct classes within
an N-dimensional feature space.

We used the SVM method for classifying text embeddings, as well as for classifying the entire dataset, which
includes numerical and categorical parameters. Since the embeddings were obtained in various ways, the
approaches to their classification also differed.

The SVM method classifies standardized data better!, so for classifying embeddings obtained using BERT, the
SVM method in the form of the SVC class from the sklearn.svm module was used within a pipeline containing the
StandardScaler class from the sklearn.preprocessing module.

The model's hyperparameters were optimized using the RandomizedSearchCV class from the
sklearn.model selection module. For the SVM model, the regularization parameter C, the type, and the coefficient
for the kernel were optimized (see parameters in repository?).

Adding numerical and categorical data caused missing values in the training set. To solve this problem, the
KNNImputer class from the sklearn.impute module was included in the pipeline, and the number of neighbors for
KNNImputer was added as an additional hyperparameter (see parameters in repository?).

The TF-IDF method was used in combination with the SVM method within a single pipeline. Since the embedding
vectors obtained using TF-IDF are already in the range from 0 to 1, additional standardization was not required.
During the hyperparameter optimization process using RandomizedSearchCV, the embedding length,
regularization parameter (C), and the type and coefficient for the kernel were adjusted (see parameters in
repository?).

When adding numerical and categorical data, new columns were filled using the KNNImputer method and
additionally standardized. The embedding vector length, the number of neighbors for the KNN method, the
regularization parameter (C), and the type and coefficient for the kernel were optimized as hyperparameters (see
parameters in repository?).

The process of extracting embeddings using the FastText method was carried out independently of the subsequent
text classification. The hyperparameters of the FastText model were manually optimized (see FastText model
parameters in repository?). The embedding vectors were pre-standardized using the StandardScaler class within a
single pipeline that included the classifier. The classifier's hyperparameters were optimized using
RandomizedSearchCV on a fixed validation dataset to prevent data leakage from the test set into the training set.
The regularization parameter (C), as well as the type and coefficient for the kernel, were optimized as
hyperparameters (see parameters in repository?).

When adding numerical and categorical data, new columns were filled using the KNNImputer method and
additionally standardized. The number of neighbors for the KNN method, the regularization parameter (C), and
the type and coefficient for the kernel were optimized as hyperparameters (see parameters in repository?).

Random Forest

The random forest method is a machine learning algorithm based on the use of an ensemble of decision trees. This
algorithm integrates two key concepts: the bagging method proposed by Breiman and the method of random
subspaces.

Since the random forest method is based on decision trees, which do not use the distance between objects,
additional data standardization was not mandatory. For classifying embeddings obtained using BERT models, the
RandomForestClassifier class from the sklearn.ensemble module was used. Hyperparameter optimization was
performed using the RandomizedSearchCV class. During the hyperparameter optimization process for the random
forest, parameters such as the number of decision trees, tree depth, split quality criterion, and the maximum number
of samples from the training dataset used to train each tree were adjusted (see parameters in repository?).
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When integrating numerical and categorical data, missing values were not filled using the KNNImputer method,
as the random forest method can handle such missing values correctly. Hyperparameter optimization was
performed using the RandomizedSearchCV method, with similar hyperparameters optimized (see parameters in
repository?).

The TF-IDF method was used in combination with the random forest model within a single pipeline. During the
hyperparameter optimization process using RandomizedSearchCV, the embedding length, number of decision
trees, tree depth, split quality criterion, and the maximum number of samples from the training dataset used to train
each tree were adjusted (see parameters in repository?).

Integrating numerical and categorical data did not change the pipeline stages, as it was not necessary to include
procedures for filling missing values and standardization. Hyperparameter optimization was performed using the
RandomizedSearchCV method, with the same hyperparameters optimized as for the classifier of embeddings
obtained using the TF-IDF model (see parameters in repository?).

Embeddings obtained using the FastText model were classified using the RandomForestClassifier. During the
hyperparameter optimization process using the RandomizedSearchCV method, parameters such as the number of
decision trees, tree depth, split quality criterion, and the maximum number of samples from the training dataset
used to train each tree were adjusted (see parameters in repository?).

As before, integrating numerical and categorical data did not change the pipeline stages, as it was not necessary to
include procedures for filling missing values and standardization. Hyperparameter optimization was performed
using the RandomizedSearchCV method, with the same hyperparameters optimized as for the classifier of
embeddings obtained using the FastText model (see parameters in repository?).

eXtreme Gradient Boosting

Extreme Gradient Boosting, also known as XGBoost, is a scalable and optimized computer science algorithm that
significantly improves the speed and efficiency of predictions performed by Gradient Boosting Machines (GBMs).
This is achieved by introducing a novel tree-based learning algorithm, as well as parallel and distributed
computing, which accelerates the process of finding optimal models.

For gradient boosting, as with the random forest method, it is not necessary to fill in missing values and standardize
data beforehand. For classifying embeddings obtained using BERT models, the XGBClassifier class from the
xgboost library was used. Hyperparameter optimization was performed using the RandomizedSearchCV class.
During the hyperparameter optimization process for gradient boosting, parameters such as the number of decision
trees, tree depth, learning rate, and the maximum number of samples from the training dataset used to train each
tree were adjusted (see parameters in repository?).

Integrating numerical and categorical data did not change the pipeline stages, as it was not necessary to include
procedures for filling missing values and standardization. Hyperparameter optimization was performed using the
RandomizedSearchCV method, with the same hyperparameters optimized as for the classifier of embeddings
obtained using the BERT model (see parameters in repository?).

The TF-IDF method was integrated with the gradient boosting model within a single pipeline. During the
hyperparameter optimization process using RandomizedSearchCV, parameters such as embedding length, number
of decision trees, tree depth, learning rate, and the maximum number of samples from the training dataset used to
train each tree were adjusted (see parameters in repository?).

Adding numerical and categorical data did not change the pipeline stages, as it was not necessary to include
procedures for filling missing values and standardization. Hyperparameter optimization was performed using the
RandomizedSearchCV method, with the same hyperparameters optimized as for the classifier of embeddings
obtained using the TF-IDF model (see parameters in repository?).

Embeddings obtained using the FastText model were classified using the XGBClassifier. During the
hyperparameter optimization process using the RandomizedSearchCV method, parameters such as the number of
decision trees, tree depth, learning rate, and the maximum number of samples from the training dataset used to
train each tree were adjusted (see parameters in repository?).
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As before, integrating numerical and categorical data did not change the pipeline stages, as it was not necessary to
include procedures for filling missing values and standardization. Hyperparameter optimization was performed
using the RandomizedSearchCV method, with the same hyperparameters optimized as for the classifier of
embeddings obtained using the FastText model (see parameters in repository?).
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Appendix 4. Estimation of the number of expected citations in documents

At this step, the activities obtained from the 32-nd version of the ChEMBL database are grouped into «protein —
ligand — activity type» systems, considering only such activity types as K; and ICso. Within each system, a complete
enumeration is performed to construct its corresponding graph and identify connectivity components. Then, within
each connectivity component, original and cited activities are identified. The general algorithm is as follows:

1) All activity vertices are initialized

2) If the logarithms of two activities differ by less than or equal to 0.02, or from 2.98 to 3.02, a directed
edge is drawn between the two corresponding vertices, from the one published later to the one published
earlier.?

3) The connectivity components of the graph arise naturally. For each connectivity component, the
vertex(es) for which there are no outgoing edges is declared to be the original.

4) Each non-original activity is matched with the nearest original that can be reached by a directed
subgraph of the connectivity component. Next, the correspondence of original activities to non-original
activities is used in manual data curation.

The constructed graph for one of the systems is illustrated in Figure S5. After the algorithm has run on the entire
set of considered activities, the fraction of cited activities is calculated for each document and used as features for
the models described above.
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Appendix 5. OOD (Out of distribution) detection

Before identifying out-of-distribution (OOD) data, we excluded points from the unlabeled dataset that did not
belong to the seven main ChEMBL journals. Documents containing missing values were also excluded. OOD
data was identified by calculating the Mahalanobis distance between the mean values of the labeled dataset and
the points in the unlabeled dataset.

The Mahalanobis distance is the distance between the point and the distribution. Let there be a distribution X on
) — T .. . . .
R" with vector of mean values of parameters @’ = (ul, Uz, U3, e yN) and positive semi-definite covariance

. o s T .
matrix S. The Mahalanobis distance of a point x” = (xl, X2, X3, ) xN) from X is

du(@,X) = V& —)TS7I(x - )

After calculating the distances for each point in the unlabeled dataset, data falling within the 90% confidence
interval were considered in-distribution, while points outside the confidence interval were considered out-of-
distribution.

From the set of OOD documents, those with two "Research Support" labels were selected, as these documents

predominantly contained experimental data in each iteration of manual curation of small samples (see manual
curation results in the repository?).
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Appendix 6. Fisher test details

For each article, the number of cited activities m and the number of remaining activities n — m were
compared with the limiting case where there is no cited activity and n original activities. Thus, for each
publication for which activities were found in ChEMBL, the probability of obtaining a distribution

(m citations, n — m originals) was calculated, provided that the null hypothesis is true and the original
distributions are the same.

S9



Appendix 7. Description of attached files

Files used for model training

ChEMBL 32 documents.xlsx

File with publication data in ChEMBL 32 with added
MEDLINE types.

ChEMBL reference.csv

File with data on the number of references in each
publication ChREMBL 32

data_from pubmed.xIsx

File with additional data extracted from PubMed

pubmed_reference.csv

File with the number of references for publications retrieved
from PubMed

abstracts_pubmed.xlsx

File with abstracts for publications retrieved from PubMed

all_pubtypes.xlsx

File with all MEDLINE tags for ChEMBL 32 database
publications

docs_citations_all 14 07.xlIsx

File containing publications that present activity and
estimated number of citations based on the method
described in Appendix 6

title_abstract_texts X.csv

File containing titles and abstracts for the publications
originally labelled

title _abstract texts all.csv

File containing titles and abstracts for unlabelled
publications

cls X matrix pubmedbert.csv

File containing CLS vectors of labelled sample texts
obtained from PubMedBERT

cls_all matrix pubmedbert.csv

File containing CLS vectors of unlabelled sample texts
obtained from PubMedBERT

cls X matrix_biobert.csv

File containing CLS vectors of labelled sample texts
obtained from BioBERT

cls_all matrix_biobert.csv

File containing CLS vectors of unlabelled sample texts
obtained from BioBERT

cls X matrix _biomed roberta.csv

File containing CLS vectors of labelled sample texts
obtained from BioMed-RoBERTa

cls all matrix biomed roberta.csv

File containing CLS vectors of unlabelled sample texts
obtained from BioMed-RoBERTa

cls X matrix_distilbert.csv

File containing CLS vectors of labelled sample texts
obtained from DistilBERT

cls all matrix_distilbert.csv

File containing CLS vectors of unlabelled sample texts
obtained from DistilBERT

train_embeddings_fasttext.csv

File containing vectors of training set texts obtained with
FastText

test_embeddings_fasttext.csv

File containing vectors of test set texts obtained with
FastText

val_embeddings_fasttext.csv

File containing vectors of validation set texts obtained with
FastText

classif df previous 30 10.csv

File containing the classification of the best model without
modifications

classif df second 30 10.csv

File containing the classification after the first modification

classif df third 30 10.csv

File containing the classification after the second
modification

classif df fourth 30 10.csv

File containing the classification after the third modification

Scripts used for model training

model comparison.ipynb

File with a Python script in which 36 models are trained

model modification.ipynb

File with a Python script in which the best model is
modified several times
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all_pubtypes_parser.py

File with a Python script that parses from PubMed all
MEDLINE types for each publication

abstract _parser pubmed data.py

File with a Python script that parses abstracts for additional
documents from PubMed

reference count parser.py

File with a Python script that parses the number of
references for additional documents from PubMed

PubmedBERT _vectorisation.ipynb

File with a Python script that converts text to embeddings
using the large language model PubMedBERT

BioBERT _vectorisation.ipynb

File with a Python script that converts text to embeddings
using the large language model BioBERT

BioMed-RoBERTa_vectorisation.ipynb

File with a Python script that converts text to embeddings
using the large language model BioMed-RoBERTa

DistilBERT vectorisation.ipynb

File with a Python script that converts text to embeddings
using the large language model DistilBERT

FastText vectorisation.ipynb

File with a Python script that converts text to embeddings
using the large language model FastText

Figures.ipynb

File with a Python script that draws Figures for the article
and Appendix 7
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Figures
Figure S1. Histograms of the logarithm parameter of the number of pages (classified data
represent data with a specific MEDLINE type, unclassified data, respectively, without this

type)
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Figure S2. Histograms of the logarithm parameter of the number of authors (classified data
represent data with a specific MEDLINE type, unclassified data, respectively, without this

type)
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Figure S3. Histograms of the parameter of the year (classified data represent data with a
specific MEDLINE type, unclassified data, respectively, without this type)
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Figure S4. Histograms of the logarithm parameter of the number of reference (classified data
represent data with a specific MEDLINE type, unclassified data, respectively, without this

type)
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Figure S5. Citation graph constructed for a single «protein — ligand — activity type» system
from a subset of ChEMBL activities. Each «id» represents corresponding activity ChEMBL ID.
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