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Appendix 1. Data extraction  
ChEMBL 
For 77,932 documents from version 32 of the ChEMBL database, datasets were loaded consisting of ChEMBL 
ID, PubMed ID, DOI, article title, abstract, journal title where the article was published, first and last page, year 
of publication, and authors. The number of references was extracted using the Crossref API. MEDLINE 
publication types were loaded from the PubMed database. For 5,357 documents, a unified publication type was 
present, and for 48,908 (62.76%), there was a mention of at least one MEDLINE type. ChEMBL data are regularly 
extracted from seven major journals: ACS Med Chem Lett, Bioorg Med Chem, Bioorg Med Chem Lett, Eur J Med 
Chem, J Med Chem, J Nat Prod, and MedChemComm. The share of publications from these journals in version 
32 of ChEMBL is 94.30%. The remaining 5.7% of data were extracted from more than 200 journals. 
PubMed 
To supplement the ChEMBL data, a set of documents was loaded, including 8,689 publications from PubMed, 
extracted from the seven main journals used by ChEMBL, and having a similar set of MEDLINE publication types 
as the 5,357 documents from the previous chapter (the full list of publication types is presented in 
all_pubtupes.xlsx). Additionally, data on the number of references were loaded using the Crossref API 
(pubmed_reference.csv). The merging of annotated data from ChEMBL and PubMed contained in the seven main 
journals, followed by the removal of duplicates, left about 8,676 documents in the training set. 
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Appendix 2. Data preprocessing 
Text preprocessing 
To train models on texts (where a text refers to the combination of the publication title and abstract), we used 
various natural language processing approaches. The TF-IDF method requires thorough preprocessing of texts. 
Similar to the bag-of-words model, this model represents a document as a set of words, ignoring their order. 
However, unlike the bag-of-words model, TF-IDF considers the frequency of word occurrences in documents, 
allowing for more accurate weighting of their significance in the context of the entire corpus. Therefore, to use 
this approach, stop words (prepositions, conjunctions, articles, etc.) should be removed. Additionally, various 
HTML tags, accented characters, punctuation marks, and other symbols, numbers, extra spaces should be removed, 
words should be converted to lowercase, and lemmatization should be performed. 

The stop words set was taken from the nltk.corpus package. HTML tags were removed using the BeautifulSoup 
library. Accented characters were replaced using the unidecode library. Punctuation marks were removed using 
the string library. Numbers were removed using regular expressions and the re library. Text lemmatization was 
performed using WordNetLemmatizer from the nltk library. When using the FastText model, text preprocessing 
included the same steps. 

For BERT models, empty texts were replaced with the “[MASK]” token. The procedure for obtaining embeddings 
using BERT models was the same. The tokenizer was set up using AutoTokenizer from the transformers library, 
and the pre-trained model was set up using AutoModel. All models and tokenizers are available on the Hugging 
Face platform. The DistilBERT model was set up from distilbert/distilbert-base-uncased, PubmedBERT from 
neuml/pubmedbert-base-embeddings, BioBERT from dmis-lab/biobert-base-cased-v1.1, and BioMed-RoBERTa 
from allenai/biomed_roberta_base. Each text was split into sentences, after which the tokenizer processed the array 
of sentences, adding special tokens indicating the beginning and end of a sentence, as well as padding tokens. 

Then, using the pre-trained model, CLS tokens of the sentences were extracted from the last hidden layer with a 
length of 768. To obtain the text embedding, the CLS tokens were averaged. 

Categorical data preprocessing 
Since the ChEMBL data are mainly extracted from seven journals, with only 5.7% of documents obtained from 
approximately 200 other journals, the journals were represented as a vector of length 7 using one-hot encoding. If 
an article did not belong to any of the seven journals, the one-hot vector for that article was a zero vector. 

Numerical data preprocessing 
Page Transformation 
In the page data, the issue number was often indicated. In such cases, the difference between the first and last 
pages was zero. These values were replaced with empty values. After replacement, the number of pages was 
transformed to the natural logarithm of the number of pages plus one. 

Author Count Transformation 
The number of authors was transformed to the natural logarithm of the number of authors plus one. 

Reference Count Transformation 
After extracting the data, zero reference values were replaced with empty values, as most publications with zero 
references actually had references. The number of references was transformed to the natural logarithm of the 
number of references plus one. 
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Appendix 3. Machine learning techniques 
SVM (Support Vector Machine) 
A support vector machine (SVM) is a supervised machine learning algorithm designed to classify data by 
identifying an optimal hyperplane or decision boundary that maximizes the margin between distinct classes within 
an N-dimensional feature space. 

We used the SVM method for classifying text embeddings, as well as for classifying the entire dataset, which 
includes numerical and categorical parameters. Since the embeddings were obtained in various ways, the 
approaches to their classification also differed. 

The SVM method classifies standardized data better1, so for classifying embeddings obtained using BERT, the 
SVM method in the form of the SVC class from the sklearn.svm module was used within a pipeline containing the 
StandardScaler class from the sklearn.preprocessing module. 

The model's hyperparameters were optimized using the RandomizedSearchCV class from the 
sklearn.model_selection module. For the SVM model, the regularization parameter C, the type, and the coefficient 
for the kernel were optimized (see parameters in repository2). 

Adding numerical and categorical data caused missing values in the training set. To solve this problem, the 
KNNImputer class from the sklearn.impute module was included in the pipeline, and the number of neighbors for 
KNNImputer was added as an additional hyperparameter (see parameters in repository2). 

The TF-IDF method was used in combination with the SVM method within a single pipeline. Since the embedding 
vectors obtained using TF-IDF are already in the range from 0 to 1, additional standardization was not required. 
During the hyperparameter optimization process using RandomizedSearchCV, the embedding length, 
regularization parameter (C), and the type and coefficient for the kernel were adjusted (see parameters in 
repository2). 

When adding numerical and categorical data, new columns were filled using the KNNImputer method and 
additionally standardized. The embedding vector length, the number of neighbors for the KNN method, the 
regularization parameter (C), and the type and coefficient for the kernel were optimized as hyperparameters (see 
parameters in repository2). 

The process of extracting embeddings using the FastText method was carried out independently of the subsequent 
text classification. The hyperparameters of the FastText model were manually optimized (see FastText model 
parameters in repository2). The embedding vectors were pre-standardized using the StandardScaler class within a 
single pipeline that included the classifier. The classifier's hyperparameters were optimized using 
RandomizedSearchCV on a fixed validation dataset to prevent data leakage from the test set into the training set. 
The regularization parameter (C), as well as the type and coefficient for the kernel, were optimized as 
hyperparameters (see parameters in repository2). 

When adding numerical and categorical data, new columns were filled using the KNNImputer method and 
additionally standardized. The number of neighbors for the KNN method, the regularization parameter (C), and 
the type and coefficient for the kernel were optimized as hyperparameters (see parameters in repository2). 

Random Forest 
The random forest method is a machine learning algorithm based on the use of an ensemble of decision trees. This 
algorithm integrates two key concepts: the bagging method proposed by Breiman and the method of random 
subspaces. 

Since the random forest method is based on decision trees, which do not use the distance between objects, 
additional data standardization was not mandatory. For classifying embeddings obtained using BERT models, the 
RandomForestClassifier class from the sklearn.ensemble module was used. Hyperparameter optimization was 
performed using the RandomizedSearchCV class. During the hyperparameter optimization process for the random 
forest, parameters such as the number of decision trees, tree depth, split quality criterion, and the maximum number 
of samples from the training dataset used to train each tree were adjusted (see parameters in repository2). 
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When integrating numerical and categorical data, missing values were not filled using the KNNImputer method, 
as the random forest method can handle such missing values correctly. Hyperparameter optimization was 
performed using the RandomizedSearchCV method, with similar hyperparameters optimized (see parameters in 
repository2). 

The TF-IDF method was used in combination with the random forest model within a single pipeline. During the 
hyperparameter optimization process using RandomizedSearchCV, the embedding length, number of decision 
trees, tree depth, split quality criterion, and the maximum number of samples from the training dataset used to train 
each tree were adjusted (see parameters in repository2). 

Integrating numerical and categorical data did not change the pipeline stages, as it was not necessary to include 
procedures for filling missing values and standardization. Hyperparameter optimization was performed using the 
RandomizedSearchCV method, with the same hyperparameters optimized as for the classifier of embeddings 
obtained using the TF-IDF model (see parameters in repository2). 

Embeddings obtained using the FastText model were classified using the RandomForestClassifier. During the 
hyperparameter optimization process using the RandomizedSearchCV method, parameters such as the number of 
decision trees, tree depth, split quality criterion, and the maximum number of samples from the training dataset 
used to train each tree were adjusted (see parameters in repository2). 

As before, integrating numerical and categorical data did not change the pipeline stages, as it was not necessary to 
include procedures for filling missing values and standardization. Hyperparameter optimization was performed 
using the RandomizedSearchCV method, with the same hyperparameters optimized as for the classifier of 
embeddings obtained using the FastText model (see parameters in repository2). 

eXtreme Gradient Boosting 
Extreme Gradient Boosting, also known as XGBoost, is a scalable and optimized computer science algorithm that 
significantly improves the speed and efficiency of predictions performed by Gradient Boosting Machines (GBMs). 
This is achieved by introducing a novel tree-based learning algorithm, as well as parallel and distributed 
computing, which accelerates the process of finding optimal models. 

For gradient boosting, as with the random forest method, it is not necessary to fill in missing values and standardize 
data beforehand. For classifying embeddings obtained using BERT models, the XGBClassifier class from the 
xgboost library was used. Hyperparameter optimization was performed using the RandomizedSearchCV class. 
During the hyperparameter optimization process for gradient boosting, parameters such as the number of decision 
trees, tree depth, learning rate, and the maximum number of samples from the training dataset used to train each 
tree were adjusted (see parameters in repository2). 

Integrating numerical and categorical data did not change the pipeline stages, as it was not necessary to include 
procedures for filling missing values and standardization. Hyperparameter optimization was performed using the 
RandomizedSearchCV method, with the same hyperparameters optimized as for the classifier of embeddings 
obtained using the BERT model (see parameters in repository2). 

The TF-IDF method was integrated with the gradient boosting model within a single pipeline. During the 
hyperparameter optimization process using RandomizedSearchCV, parameters such as embedding length, number 
of decision trees, tree depth, learning rate, and the maximum number of samples from the training dataset used to 
train each tree were adjusted (see parameters in repository2). 

Adding numerical and categorical data did not change the pipeline stages, as it was not necessary to include 
procedures for filling missing values and standardization. Hyperparameter optimization was performed using the 
RandomizedSearchCV method, with the same hyperparameters optimized as for the classifier of embeddings 
obtained using the TF-IDF model (see parameters in repository2). 

Embeddings obtained using the FastText model were classified using the XGBClassifier. During the 
hyperparameter optimization process using the RandomizedSearchCV method, parameters such as the number of 
decision trees, tree depth, learning rate, and the maximum number of samples from the training dataset used to 
train each tree were adjusted (see parameters in repository2). 
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As before, integrating numerical and categorical data did not change the pipeline stages, as it was not necessary to 
include procedures for filling missing values and standardization. Hyperparameter optimization was performed 
using the RandomizedSearchCV method, with the same hyperparameters optimized as for the classifier of 
embeddings obtained using the FastText model (see parameters in repository2). 
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Appendix 4. Estimation of the number of expected citations in documents 

At this step, the activities obtained from the 32-nd version of the ChEMBL database are grouped into «protein – 
ligand – activity type» systems, considering only such activity types as Ki and IC50. Within each system, a complete 
enumeration is performed to construct its corresponding graph and identify connectivity components. Then, within 
each connectivity component, original and cited activities are identified. The general algorithm is as follows: 

1) All activity vertices are initialized 

2) If the logarithms of two activities differ by less than or equal to 0.02, or from 2.98 to 3.02, a directed 
edge is drawn between the two corresponding vertices, from the one published later to the one published 
earlier.3 

3) The connectivity components of the graph arise naturally. For each connectivity component, the 
vertex(es) for which there are no outgoing edges is declared to be the original.  

4) Each non-original activity is matched with the nearest original that can be reached by a directed 
subgraph of the connectivity component. Next, the correspondence of original activities to non-original 
activities is used in manual data curation. 

The constructed graph for one of the systems is illustrated in Figure S5. After the algorithm has run on the entire 
set of considered activities, the fraction of cited activities is calculated for each document and used as features for 
the models described above. 
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Appendix 5. OOD (Out of distribution) detection 

Before identifying out-of-distribution (OOD) data, we excluded points from the unlabeled dataset that did not 
belong to the seven main ChEMBL journals. Documents containing missing values were also excluded. OOD 
data was identified by calculating the Mahalanobis distance between the mean values of the labeled dataset and 
the points in the unlabeled dataset. 

The Mahalanobis distance is the distance between the point and the distribution. Let there be a distribution X on 
RN with vector of mean values of parameters 𝜇𝜇 ���⃗ = �𝜇𝜇1,𝜇𝜇2, 𝜇𝜇3, … , 𝜇𝜇𝑁𝑁�

𝑇𝑇 and positive semi-definite covariance 
matrix S. The Mahalanobis distance of a point 𝑥𝑥 ���⃗ = �𝑥𝑥1,𝑥𝑥2,𝑥𝑥3, … , 𝑥𝑥𝑁𝑁�

𝑇𝑇 from X is 

 𝑑𝑑𝑀𝑀(𝑥𝑥 ���⃗ ,𝑋𝑋) =  �(𝑥𝑥 ���⃗ − 𝜇𝜇 ���⃗ )𝑇𝑇𝑆𝑆−1(𝑥𝑥 ���⃗ − 𝜇𝜇 ���⃗ ) 

After calculating the distances for each point in the unlabeled dataset, data falling within the 90% confidence 
interval were considered in-distribution, while points outside the confidence interval were considered out-of-
distribution. 

From the set of OOD documents, those with two "Research Support" labels were selected, as these documents 
predominantly contained experimental data in each iteration of manual curation of small samples (see manual 
curation results in the repository2). 
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Appendix 6. Fisher test details 

For each article, the number of cited activities 𝑚𝑚 and the number of remaining activities 𝑛𝑛 −𝑚𝑚 were 
compared with the limiting case where there is no cited activity and 𝑛𝑛 original activities. Thus, for each 
publication for which activities were found in ChEMBL, the probability of obtaining a distribution 
(𝑚𝑚 citations, 𝑛𝑛 −𝑚𝑚 originals) was calculated, provided that the null hypothesis is true and the original 
distributions are the same. 
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Appendix 7. Description of attached files 
Files used for model training 

ChEMBL_32_documents.xlsx 
File with publication data in ChEMBL_32 with added 
MEDLINE types. 

ChEMBL_reference.csv 
File with data on the number of references in each 
publication ChEMBL_32 

data_from_pubmed.xlsx File with additional data extracted from PubMed 

pubmed_reference.csv 
File with the number of references for publications retrieved 
from PubMed 

abstracts_pubmed.xlsx File with abstracts for publications retrieved from PubMed 

all_pubtypes.xlsx 
File with all MEDLINE tags for ChEMBL_32 database 
publications 

docs_citations_all_14_07.xlsx 
File containing publications that present activity and 
estimated number of citations based on the method 
described in Appendix 6 

title_abstract_texts_X.csv 
File containing titles and abstracts for the publications 
originally labelled 

title_abstract_texts_all.csv 
File containing titles and abstracts for unlabelled 
publications  

cls_X_matrix_pubmedbert.csv 
File containing CLS vectors of labelled sample texts 
obtained from PubMedBERT 

cls_all_matrix_pubmedbert.csv 
File containing CLS vectors of unlabelled sample texts 
obtained from PubMedBERT 

cls_X_matrix_biobert.csv 
File containing CLS vectors of labelled sample texts 
obtained from BioBERT 

cls_all_matrix_biobert.csv 
File containing CLS vectors of unlabelled sample texts 
obtained from BioBERT 

cls_X_matrix_biomed_roberta.csv 
File containing CLS vectors of labelled sample texts 
obtained from BioMed-RoBERTa 

cls_all_matrix_biomed_roberta.csv 
File containing CLS vectors of unlabelled sample texts 
obtained from BioMed-RoBERTa 

cls_X_matrix_distilbert.csv 
File containing CLS vectors of labelled sample texts 
obtained from DistilBERT 

cls_all_matrix_distilbert.csv 
File containing CLS vectors of unlabelled sample texts 
obtained from DistilBERT 

train_embeddings_fasttext.csv 
File containing vectors of training set texts obtained with 
FastText 

test_embeddings_fasttext.csv 
File containing vectors of test set texts obtained with 
FastText 

val_embeddings_fasttext.csv 
File containing vectors of validation set texts obtained with 
FastText 

classif_df_previous_30_10.csv 
File containing the classification of the best model without 
modifications 

classif_df_second_30_10.csv File containing the classification after the first modification 

classif_df_third_30_10.csv 
File containing the classification after the second 
modification 

classif_df_fourth_30_10.csv File containing the classification after the third modification 
  

Scripts used for model training 
model_comparison.ipynb File with a Python script in which 36 models are trained 

model_modification.ipynb 
File with a Python script in which the best model is 
modified several times 
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all_pubtypes_parser.py 
File with a Python script that parses from PubMed all 
MEDLINE types for each publication 

abstract_parser_pubmed_data.py 
File with a Python script that parses abstracts for additional 
documents from PubMed 

reference count parser.py 
File with a Python script that parses the number of 
references for additional documents from PubMed 

PubmedBERT_vectorisation.ipynb 
File with a Python script that converts text to embeddings 
using the large language model PubMedBERT 

BioBERT_vectorisation.ipynb 
File with a Python script that converts text to embeddings 
using the large language model BioBERT 

BioMed-RoBERTa_vectorisation.ipynb 
File with a Python script that converts text to embeddings 
using the large language model BioMed-RoBERTa 

DistilBERT_vectorisation.ipynb 
File with a Python script that converts text to embeddings 
using the large language model DistilBERT 

FastText_vectorisation.ipynb 
File with a Python script that converts text to embeddings 
using the large language model FastText 

Figures.ipynb 
File with a Python script that draws Figures for the article 
and Appendix 7 
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Figures 
Figure S1. Histograms of the logarithm parameter of the number of pages (classified data 
represent data with a specific MEDLINE type, unclassified data, respectively, without this 
type) 
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Figure S2. Histograms of the logarithm parameter of the number of authors (classified data 
represent data with a specific MEDLINE type, unclassified data, respectively, without this 
type) 
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Figure S3. Histograms of the parameter of the year (classified data represent data with a 
specific MEDLINE type, unclassified data, respectively, without this type) 
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Figure S4. Histograms of the logarithm parameter of the number of reference (classified data 
represent data with a specific MEDLINE type, unclassified data, respectively, without this 
type) 
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Figure S5. Citation graph constructed for a single «protein – ligand – activity type» system 
from a subset of ChEMBL activities. Each «id» represents corresponding activity ChEMBL ID. 
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