
A practical carbamoylsilane-based synthesis of β -arylidene N -methoxymethyl α -siloxy carboxamides from α,β -enones

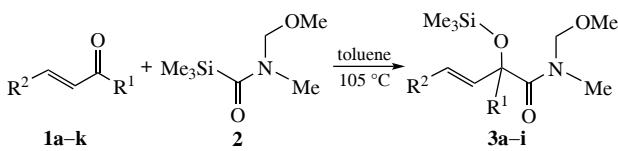
Minggang Zhao, Fei Ma and Jianxin Chen*

Key Laboratory of Magnetic Molecules and Magnetic Information Materials, College of Chemistry and Materials Science, Shanxi Normal University, 030031 Taiyuan, P. R. China. E-mail: jjxxcc2002@126.com

DOI: 10.71267/mencom.7707

Using N -methoxymethyl- N -methylcarbamoylsilane as potent secondary amide source, the direct transformation of β -aryl- α,β -enones into the corresponding N,N -disubstituted β -arylidene α -siloxy carboxamides via the aminocarbonylation reaction is described. The reactions provide good yields of the products under simple and catalyst-free conditions.

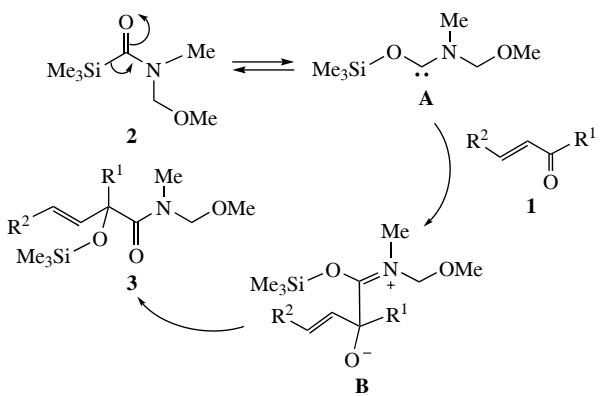
Keywords: β -arylidene α -siloxy carboxamides, carbamoylsilanes, unsaturated ketones, aminocarbonylation.


α -Hydroxy carboxamides are widely used in the synthesis of bioactive peptide products;^{1–3} they also possess biological activities.^{4,5} β -Arylidene α -hydroxy amides were used as precursors in the construction of angiotensin-converting enzyme inhibitors such as ramipril and benazepril.^{6,7} The commonly used method for their preparation is the aldol condensation between aromatic aldehydes and compounds with MeC(O)C(O) fragment followed by reduction of the keto group.^{8,9} Carbamoyllithium reagents have also been used to introduce carbamoyl groups by the nucleophilic addition to α,β -unsaturated aldehydes or ketones,¹⁰ however, this reaction is accompanied by formation of by-products.¹¹ We have previously reported that the reaction between N,N -dimethylcarbamoylsilane and aldehydes provided direct route to α -hydroxy amides.¹² Recently, He reported that the catalytic reaction between N,N -dimethylcarbamoylsilane and ketones gave α -hydroxy amides.¹³ Although that synthetic route was simple and effective in generating α -hydroxy amides, however, the reaction scope was limited only to tertiary amides. Meantime, for practical applications secondary α -hydroxy amides are strongly desired.^{14,15} Taking this into account, carbamoylsilane bearing N -methoxymethyl substituent as the protecting group may be a solution to the problem.

In this study, we have accomplished the reaction of α,β -enones **1** with carbamoylsilane **2** containing N -methoxymethyl group to afford β -arylidene α -siloxy amides **3** under non-catalysis conditions (Scheme 1). The reaction of α,β -enones **1**

was performed under anhydrous conditions with 1.2 equiv. of N -methoxymethyl- N -methylcarbamoylsilane **2**¹⁶ in toluene. Trimethylsilyl group in products **3** may be regarded as a hydroxy protecting group and can be eliminated. N -Methoxymethyl group in compounds **3** can be easily hydrolyzed in a mixture of concentrated hydrochloric acid and dichloromethane at room temperature^{17,18} thus affording the target secondary amides. To our knowledge, there are currently no reports on the direct synthesis of secondary β -arylidene α -hydroxy amides from α,β -unsaturated ketones and carbamoylsilanes.

Our investigation was initiated by examining the effects of different reaction parameters on the reaction to optimize the conditions. A series of solvents, THF, benzene, toluene and acetonitrile, were screened using the reaction of N -methoxymethyl- N -methylcarbamoylsilane **2** with chalcone **1a** as a model. The reaction proceeded with all tested solvents, however, the highest yield of product **3a** was achieved in toluene at 105 °C. Lowering the temperature led to significant decrease in the yield and prolongation of the reaction time. Raising the temperature would reduce the conversion efficiency and cause formation of by-products (e.g., N -methoxymethyl- N -methylformamide).


Under optimized conditions, we examined some other α,β -enones to explore the reaction scope and limitations (see Scheme 1).[†] A comparison of the results obtained with enones **3a–e** indicates that the electronic property of substituents is an important factor: electron-withdrawing groups accelerate the reaction while with electron-donating groups the reactions were slower. Anyway, the product yields in all these cases were at

- a** $\text{R}^1 = \text{R}^2 = \text{Ph}$ (67%)
- b** $\text{R}^1 = \text{Ph}$, $\text{R}^2 = 4\text{-MeC}_6\text{H}_4$ (63%) **g** $\text{R}^1 = \text{PhCH=CH}$, $\text{R}^2 = \text{Ph}$ (73%)
- c** $\text{R}^1 = \text{Ph}$, $\text{R}^2 = 4\text{-MeOC}_6\text{H}_4$ (68%) **h** $\text{R}^1 = \text{Ph}$, $\text{R}^2 = 2\text{-furyl}$ (66%)
- d** $\text{R}^1 = \text{Ph}$, $\text{R}^2 = 4\text{-ClC}_6\text{H}_4$ (71%) **i** $\text{R}^1 = \text{Ph}$, $\text{R}^2 = 2\text{-thienyl}$ (64%)
- e** $\text{R}^1 = \text{Ph}$, $\text{R}^2 = 4\text{-O}_2\text{NC}_6\text{H}_4$ (73%) **j** $\text{R}^1 = \text{Me}$, $\text{R}^2 = \text{Ph}$: no reaction
- f** $\text{R}^1 = \text{Ph}$, $\text{R}^2 = \text{PhCH=CH}$ (74%) **k** $\text{R}^1 = \text{Me}_2\text{C=CH}$, $\text{R}^2 = \text{Ph}$: no reaction

Scheme 1

[†] General procedure for the aminocarbonylation of α,β -unsaturated ketones **1** with carbamoylsilane **2**. A Schlenk tube fitted with a Teflon vacuum stopcock and micro stirring bar was flame heated under vacuum and refilled with argon. α,β -Unsaturated ketone **1a–i** (0.5 mmol) and anhydrous toluene (1.5 ml) were added at ice bath temperature. After 15 min, N -methoxymethyl- N -methylcarbamoylsilane **2** (0.6 mmol) was added. The sealed reaction mixture was stirred at 105 °C until no carbamoylsilane **2** could be detected by TLC. The volatiles were removed *in vacuo* to give crude products, which were purified by column chromatography on silica gel using light petroleum–ethyl acetate as eluent to yield products **3a–i**.

Scheme 2

the level of 70%. Chalcone ‘vinylogs’ **2f,g** as well as hetaryl analogs **2h,i** were similarly transformed into the corresponding products **3f–i** in good yields. However, enones with aliphatic substituents **2j,k** did not react with carbamoylsilane **2** even upon lengthening the reaction time to 150 h. Similar phenomenon was previously observed for alkyl ketones when nothing of the products was obtained.¹⁹

On the basis of the structure of products **3** and the literature reports,^{20,21} a plausible mechanism of the reaction may be proposed (Scheme 2). Carbamoylsilane **2** would rearrange into its nucleophilic carbene form **A**,^{22,23} which possesses a nucleophilic lone electron pair and can attack the positively charged C=O group in ketones **1** to produce unstable zwitterion intermediate **B**. The silyl group in **B** is prone to 1,4 migration from one oxygen atom to another negatively charged oxygen atom thus generating final products **3**.

To conclude, a practical synthesis toward β -arylidene α -siloxy carboxamides has been successfully developed based on *N*-methoxymethyl-*N*-methylcarbamoylsilane. The *N*-methoxymethyl group in the products may be regarded as a protecting group at amido function while Me_3Si group may be considered as the protection of the hydroxy group. The removal of these protections opens a way to secondary β -arylidene α -hydroxy-carboxamides, valuable substrates for the synthesis of biologically active compounds.

This work was supported by the Shanxi Province Foundation for Returnees (no. 0713), the Natural Science Foundation of Shanxi Province (nos. 2012011046-9 and 201901D111278) and the 1331 Engineering of Shanxi Province, China.

Online Supplementary Materials

Supplementary data associated with this article can be found in the online version at doi: 10.71267/mencom.7707.

References

- M. Sakurai, S. Higashida, M. Sugano, T. Komai, R. Yagi, Y. Ozawa, H. Handa, T. Nishigaki and Y. Yabe, *Bioorg. Med. Chem.*, 1994, **2**, 807; [https://doi.org/10.1016/S0968-0896\(00\)82173-2](https://doi.org/10.1016/S0968-0896(00)82173-2).
- R. E. Babine and S. L. Bender, *Chem. Rev.*, 1997, **97**, 1359; <https://doi.org/10.1021/cr960370z>.
- V. A. Mamedov, V. R. Galimullina, S. F. Kadyrova, I. Kh. Rizvanov and S. K. Latypov, *Tetrahedron Lett.*, 2022, **99**, 153797; <https://doi.org/10.1016/j.tetlet.2022.153797>.
- M. R. Wood, K. M. Schirripa, J. J. Kim, S. D. Kuduk, R. K. Chang, C. N. Di Marco, R. M. DiPardo, B.-L. Wan, K. L. Murphy, R. W. Ransom, R. S. L. Chang, M. A. Holahan, J. J. Cook, W. Lemaire, S. D. Mosser, R. A. Bednar, C. Tang, T. Prueksaritanont, A. A. Wallace, Q. Mei, J. Yu, D. L. Bohn, F. C. Clayton, E. D. Adarayn, G. R. Sitko, Y. M. Leonard, R. M. Freidinger, D. J. Pettibone and M. G. Bock, *Bioorg. Med. Chem. Lett.*, 2008, **18**, 716; <https://doi.org/10.1016/j.bmcl.2007.11.050>.
- A. M. Efremov, D. A. Babkov, O. V. Beznos, E. V. Sokolova, A. A. Spasov, V. N. Ivanov, A. V. Kurkin, N. B. Chesnokova and N. A. Lozinskaya, *Mendeleev Commun.*, 2023, **33**, 550; <https://doi.org/10.1016/j.mencom.2023.06.035>.
- K. Yasunari, K. Maeda, M. Nakamura, T. Watanabe, J. Yoshikawa and A. Asada, *Cardiovasc. Drug Rev.*, 2004, **22**, 189; <https://doi.org/10.1111/j.1527-3466.2004.tb00140.x>.
- F. F. Hou, X. Zhang, G. H. Zhang, D. Xie, P. Y. Chen, W. R. Zhang, J. P. Jiang, M. Liang, G. B. Wang, Z. R. Liu and R. W. Geng, *N. Engl. J. Med.*, 2006, **354**, 131; <https://doi.org/10.1056/NEJMoa053107>.
- C. W. Downey, H. M. Glist, A. Takashima, S. K. Bottum and G. J. Dixon, *Tetrahedron Lett.*, 2018, **59**, 3080; <https://doi.org/10.1016/j.tetlet.2018.06.066>.
- S. M. Wang, Y. N. Yu, J. L. Wen and X. M. Zhang, *Synlett*, 2018, **29**, 2203; <https://doi.org/10.1055/s-0037-1609623>.
- D. J. Ramon and M. Yus, *Tetrahedron Lett.*, 1993, **34**, 7115; [https://doi.org/10.1016/S0040-4039\(00\)61613-1](https://doi.org/10.1016/S0040-4039(00)61613-1).
- N. S. Nudelman and G. E. G. Linares, *J. Org. Chem.*, 2000, **65**, 1629; <https://doi.org/10.1021/jo9908445>.
- Y. Yao, W. Ton and J. Chen, *Mendeleev Commun.*, 2014, **24**, 176; <https://doi.org/10.1016/j.mencom.2014.04.018>.
- S.-S. Yang, Y.-Z. Ren, Y.-Y. Guo, G.-F. Du, Z.-H. Cai and L. He, *New J. Chem.*, 2021, **45**, 7256; <https://doi.org/10.1039/d1nj00782c>.
- C.-H. Liu, Q. Wang, Z. Xu, D. Li and Y. Zheng, *Synth. Commun.*, 2022, **52**, 1537; <https://doi.org/10.1080/00397911.2022.2098045>.
- J. Escorihuela, M. I. Burguete, G. Ujaque, A. Lledos and S. V. Luis, *Org. Biomol. Chem.*, 2016, **14**, 11125; <https://doi.org/10.1039/C6OB01878E>.
- R. F. Cunico and J. Chen, *Synth. Commun.*, 2003, **33**, 1963; <https://doi.org/10.1081/SCC-120020211>.
- U. Schollkopf and H. Beckhaus, *Angew. Chem., Int. Ed. Engl.*, 1976, **15**, 293; <https://doi.org/10.1002/anie.197602931>.
- Q. Guo, M. Zhao and J. Chen, *Tetrahedron*, 2020, **76**, 131476; <https://doi.org/10.1018/j.tet.2020131476>.
- Y. Yao, W. Li and J. Chen, *Chin. J. Org. Chem.*, 2014, **34**, 2124; <https://doi.org/10.6023/cjoc201404048>.
- R. F. Cunico and R. K. Pandey, *J. Org. Chem.*, 2005, **70**, 9048; <https://doi.org/10.1021/jo0512406>.
- P. Cao, X. Wen and J. Chen, *Synlett*, 2017, **28**, 353; <https://doi.org/10.1055/s-0036-1588346>.
- H.-J. Zhang, D. L. Priebe and C. Bolm, *Chem. Soc. Rev.*, 2013, **42**, 8540; <https://doi.org/10.1039/c3cs60185d>.
- W. Tong, P. Cao, Y. Liu and J. Chen, *J. Org. Chem.*, 2017, **82**, 11603; <https://doi.org/10.1021/acs.joc.7b01028>.

Received: 12th December 2024; Com. 24/7707