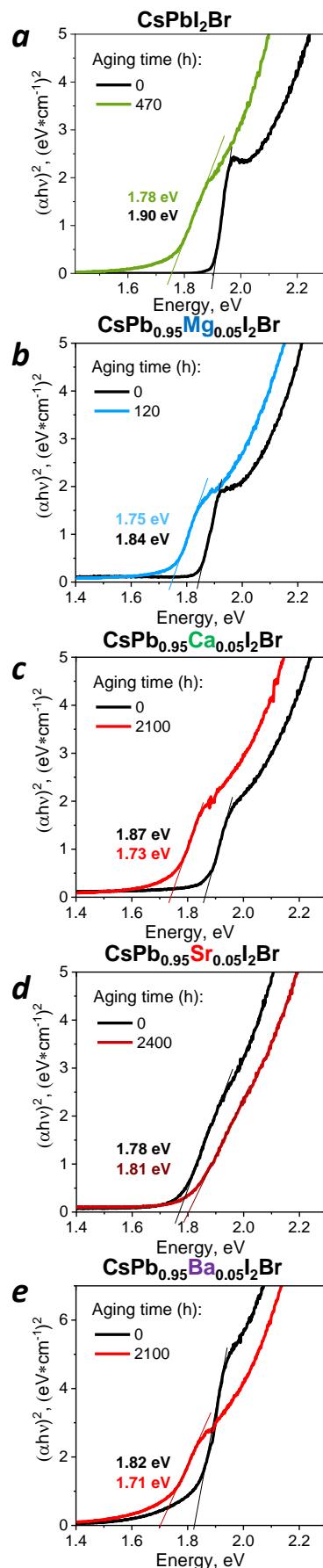


Towards stable wide-bandgap perovskite absorbers: controlling light-induced halide phase segregation in CsPbI_2Br through partial lead substitution

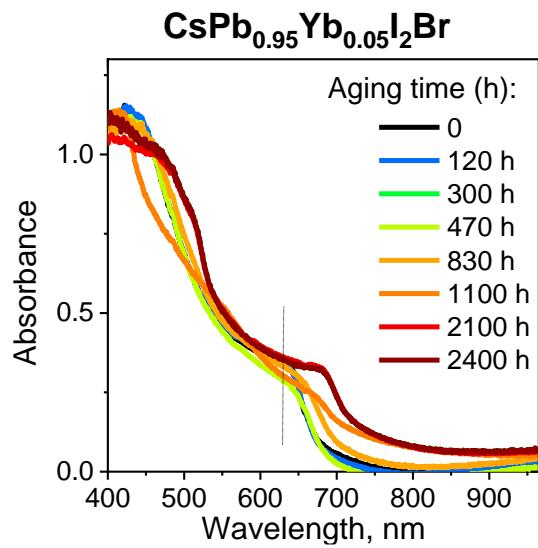
**Marina I. Ustinova, Gennady V. Shilov, Denis V. Korchagin, Pavel A. Troshin,
Sergey M. Aldoshin and Lyubov A. Frolova**

Content

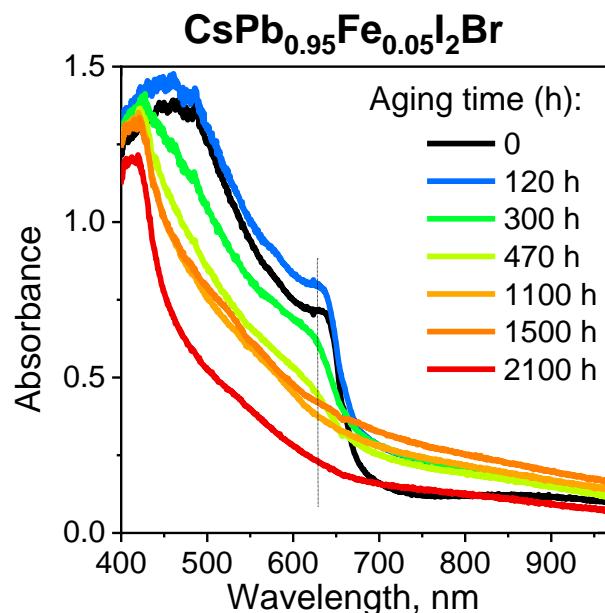
Materials and methods.....	S1
Figure S1. Tauc plots illustrating the change in the band gap of the films CsPbI_2Br (a), $\text{CsPb}_{0.95}\text{Mg}_{0.05}\text{I}_2\text{Br}$ (b), $\text{CsPb}_{0.95}\text{Ca}_{0.05}\text{I}_2\text{Br}$ (c), $\text{CsPb}_{0.95}\text{Sr}_{0.05}\text{I}_2\text{Br}$ (d), and $\text{CsPb}_{0.95}\text{Ba}_{0.05}\text{I}_2\text{Br}$ (e).....	S2
Figures S2. The evolution of the optical UV-Vis absorption spectra of the $\text{CsPb}_{0.95}\text{Yb}_{0.05}\text{I}_2\text{Br}$ films during 2400 h of aging.....	S3
Figures S3. The evolution of the optical UV-Vis absorption spectra of the $\text{CsPb}_{0.95}\text{Fe}_{0.05}\text{I}_2\text{Br}$ films during 2100 h of aging.....	S3
Figure S4. The evolution of the optical UV-Vis absorption spectra of the $\text{CsPb}_{0.95}\text{Sn}_{0.05}\text{I}_2\text{Br}$, $\text{CsPb}_{0.95}\text{In}_{0.033}\text{I}_2\text{Br}$ and $\text{CsPb}_{0.95}\text{Bi}_{0.033}\text{I}_2\text{Br}$ films during 2400 h of aging.....	S4
Figure S5. The XRD patterns of the pristine $\text{CsPb}_{0.95}\text{Sn}_{0.05}\text{I}_2\text{Br}$ films and after 200 h of aging.	S5

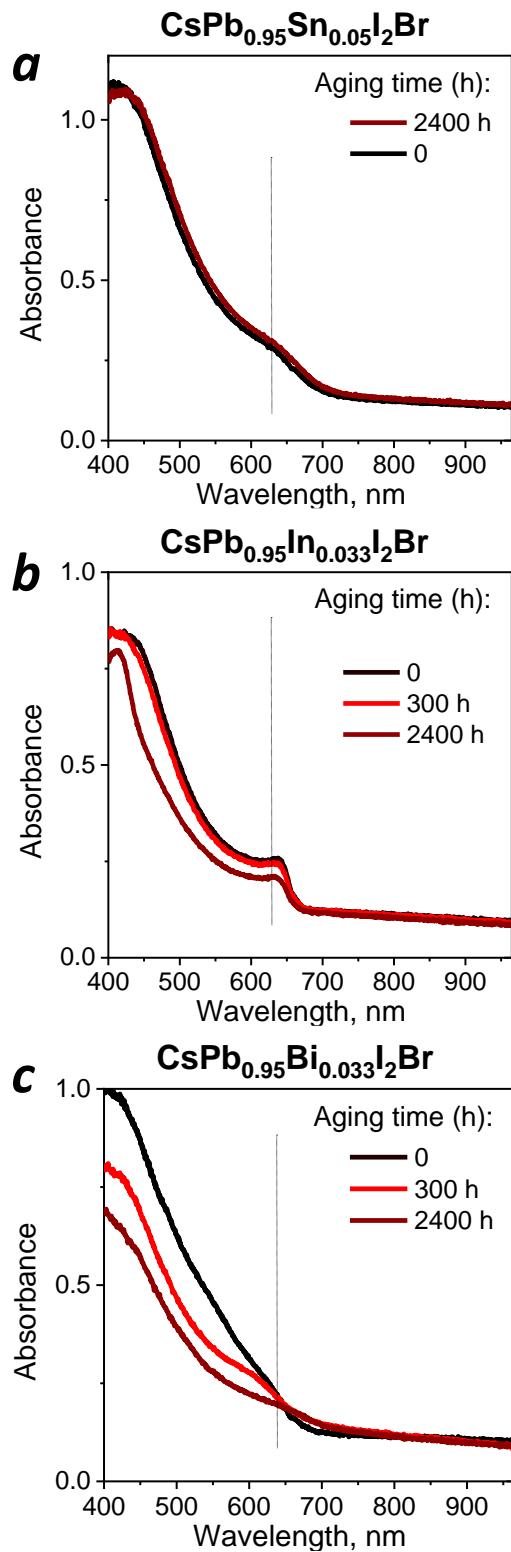

Materials and methods

Materials


Glass slides (25x25 mm) used as substrates were purchased from Iso-lab GmbH. Anhydrous dimethyl sulfoxide (DMSO) used as solvent was purchased from Sigma-Aldrich and used as received inside nitrogen glove boxes. The following anhydrous reagents and solvents were purchased from Sigma-Aldrich (USA): CsI , CsBr , PbI_2 , CaI_2 , SrI_2 , BaI_2 , PtI_2 , EuI_2 , SnI_2 , MnI_2 , FeI_2 , CoI_2 , CuI , AgI , ZnI_2 , HgI_2 , CdI_2 , and SbI_3 (purity 99.999%); YI_3 , NdI_3 , DyI_2 , YbI_2 , and LuI_3 (purity 99.9%); GeI_2 (purity 99.8%); MgI_2 , BiI_3 , and InI_3 (purity 99.998%); NiI_2 , LaI_3 , CeI_3 , ErI_3 , TbI_3 , and GdI_3 (purity 99.99%)

Perovskite films characterization


The UV-Vis absorption spectra were obtained using an AvaSpec-2048-2 UV-Vis fiber spectrometer integrated inside a glove box. The X-ray diffraction (XRD) patterns were collected using an Aeris instrument (Malvern PANalytical B.V.) with the $\text{CuK}\alpha$ source.


Figure S1. Tauc plots illustrating the change in the band gap of the films CsPbI_2Br (a), $\text{CsPb}_{0.95}\text{Mg}_{0.05}\text{I}_2\text{Br}$ (b), $\text{CsPb}_{0.95}\text{Ca}_{0.05}\text{I}_2\text{Br}$ (c), $\text{CsPb}_{0.95}\text{Sr}_{0.05}\text{I}_2\text{Br}$ (d), and $\text{CsPb}_{0.95}\text{Ba}_{0.05}\text{I}_2\text{Br}$ (e).

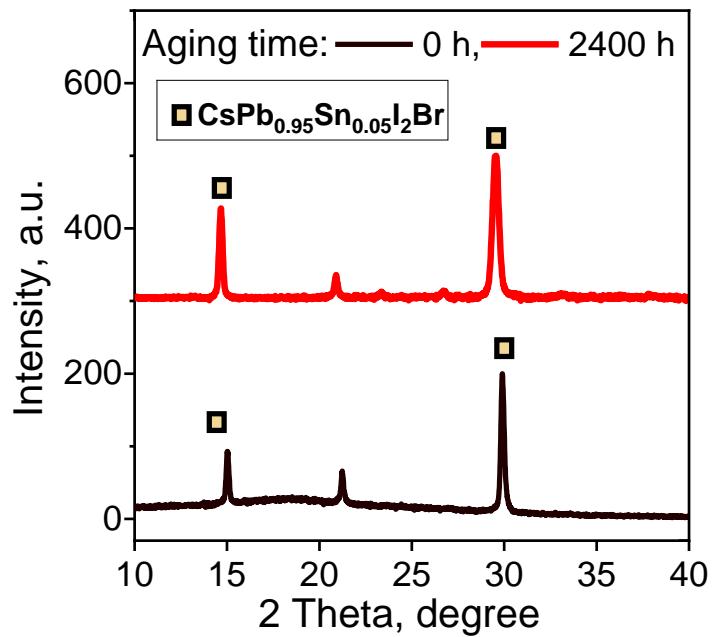

Figure S2. The evolution of the optical UV-Vis absorption spectra of the CsPb_{0.95}Yb_{0.05}I₂Br films during 2400 h of aging.

Figure S3. The evolution of the optical UV-Vis absorption spectra of the CsPb_{0.95}Fe_{0.05}I₂Br films during 2100 h of aging.

Figure S4. The evolution of the optical UV-Vis absorption spectra of the CsPb_{0.95}Sn_{0.05}I₂Br, CsPb_{0.95}In_{0.033}I₂Br and CsPb_{0.95}Bi_{0.033}I₂Br films during 2400 h of aging.

Figure S5. The XRD patterns of the pristine $\text{CsPb}_{0.95}\text{Sn}_{0.05}\text{I}_2\text{Br}$ films and after 2400 h of aging.