

**Measurement of chain transfer to monomer constants  
in ketene acetal homo- and copolymerization**

**Mikhail Yu. Zaremski, Elvin E. Aliev, Elena V. Pukhanova, Natalya S. Goulioukina  
and Anna V. Platalova**

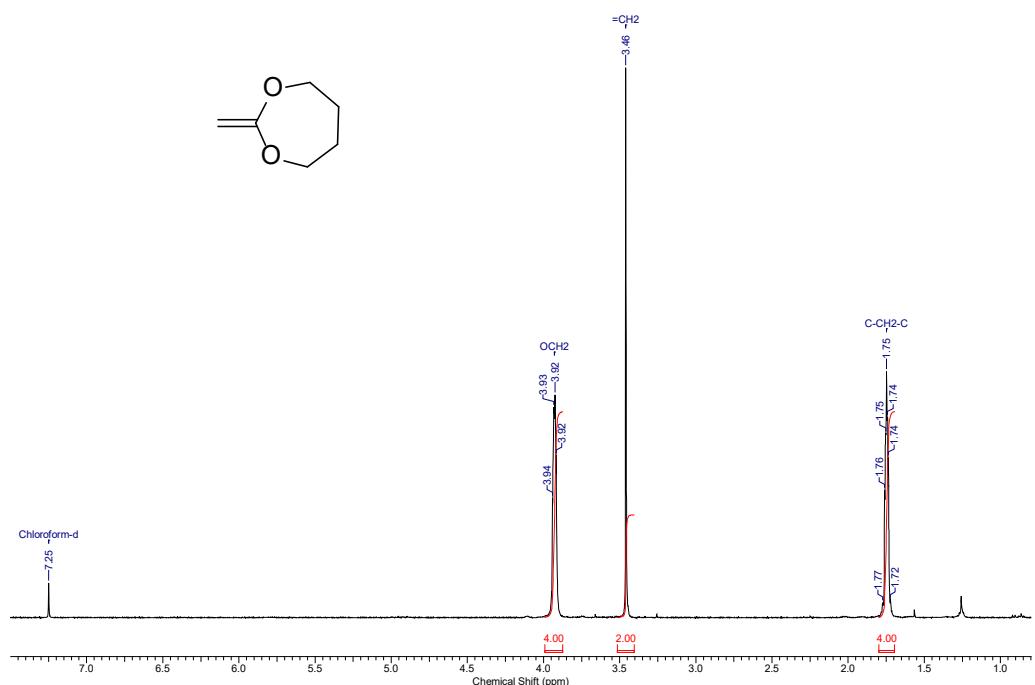
**Experimental Section**

*Reagents.* Styrene (Aldrich) was distilled under reduced pressure prior to use. 2,2'-Azobis(isobutyronitrile) (AIBN) was recrystallized from ethanol. Vinyl acetate (Reakhim) was dried with  $\text{CaCl}_2$  and fractionally distilled at atmospheric pressure under argon. 1,4-Butanediol (Reakhim) was purified by repeated fractional freezing, dried over anhydrous  $\text{Na}_2\text{SO}_4$ , doubly distilled *in vacuo* in the presence of  $\text{Na}_2\text{SO}_4$  and stored over 4 $\text{\AA}$  molecular sieves. *p*-Toluenesulphonic acid was dried at 100 °C for 4 h under water-pump vacuum with  $\text{P}_2\text{O}_5$  as desiccant to absorb water vapor. Methanol was boiled and distilled over magnesium methylate. Di-*tert*-butyl peroxide (DTBP) (Trigonox B grade, Nouryon), bromine (Reakhim),  $\text{Bu}_4\text{NBr}$  (Kemstor), and benzene (HPLC grade, Reakhim) were used as received.

*Synthesis of 2-methylene-1,3-dioxepane (MDO).* The monomer was synthesized in 3 steps according to the literature procedures. First, bromoacetaldehyde dimethyl acetal was obtained in 54% yield by bromination of vinyl acetate in methanol similar to the procedure in ref.<sup>S1</sup> Further the ring closure reaction of  $\text{BrCH}_2\text{CH}(\text{OMe})_2$  with 1,4-butanediol in the presence of a catalytic amount of *p*-toluenesulfonic acid at 80–125 °C for 30 h led to the formation 2-bromomethyl-1,3-dioxepane in 81% yield.<sup>S2</sup> Finally, the elimination reaction of 2-bromomethyl-1,3-dioxepane with KOH and  $\text{Bu}_4\text{NBr}$  at 80 °C for 19 h afforded MDO in 42% yield.<sup>S3</sup>

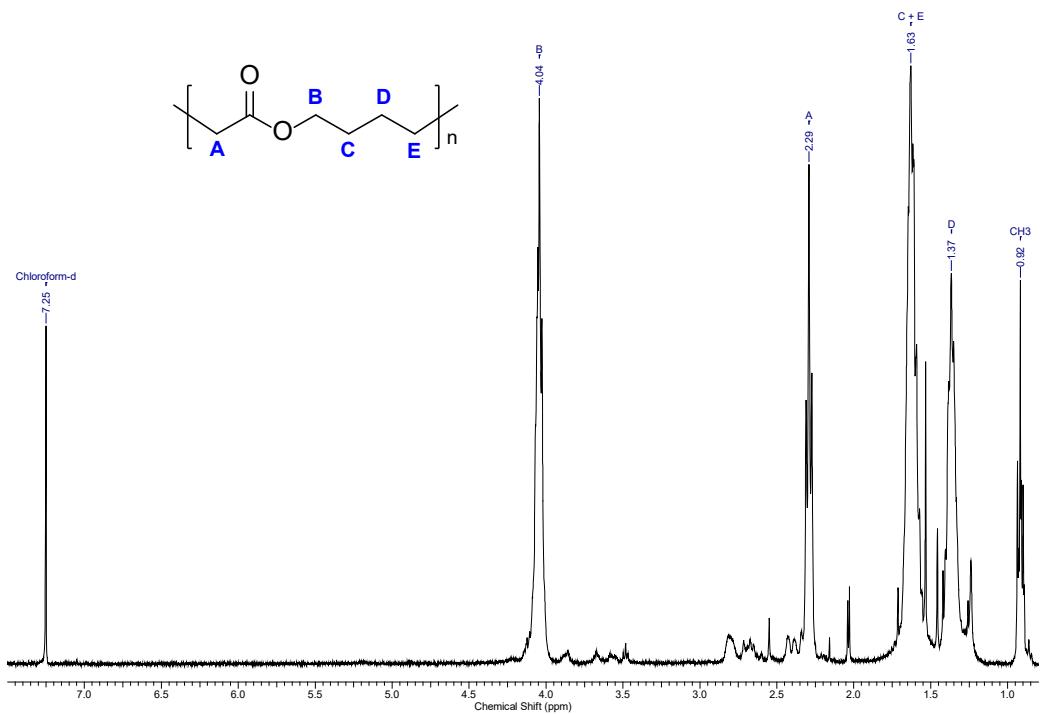
*Polymerization.* (Co)Polymerization mixtures were prepared as described previously:<sup>S4,S5</sup> initiator and MDO (and styrene) were weighted into 0.3-1.0 mL vial. The reaction mixtures were degassed by several freeze-thaw cycles in a vacuum to 1,3 Pa and sealed off. The (co)polymerization was carried out at 70 or 125 °C.

*The molecular weight characteristics* of the polymers were determined by gel permeation chromatography (GPC) using the Agilent 1260 Infinity Multi-Detector GPC/SEC System equipped with two PLgel 5 µm MIXED B columns ( $M = 5 \times 10^2 - 1 \times 10^7$ ) using THF as the eluent at a flow rate of 1 mL/min at 40 °C. Samples taken directly from the polymerization mixture were analyzed. The number-average MWs were calculated using narrow dispersity PMMA standards. The MWs obtained using PMMA standards were recalculated using the universal calibration curve and the parameters values  $k = 1.3 \times 10^{-4}$  dL g<sup>-1</sup>,  $\alpha = 0.688$  (PMMA)<sup>S6</sup> and  $k = 1.395 \times 10^{-5}$  dL g<sup>-1</sup>,  $\alpha = 0.786$  (polycaprolactone).<sup>S7</sup> [In the calculation of  $C_M$  for PS, MWs obtained using PMMA standards were recalculated using the equation  $M_n(\text{PMMA}) = 0,644 M_n^{1.019}(\text{PS})$ .<sup>S8</sup>]

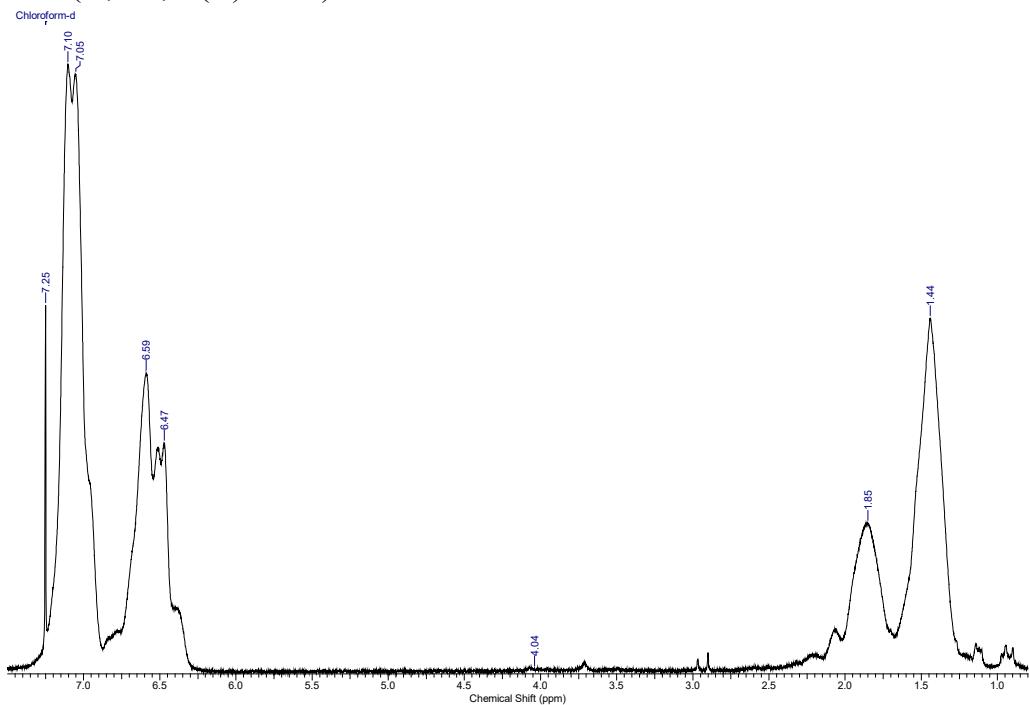

<sup>1</sup>H NMR spectra were recorded on the Bruker Avance-400 spectrometer at ambient temperature. Chemical shifts are reported on the δ-scale in parts per million relative to the residual solvent peak (CHCl<sub>3</sub>: δ<sub>H</sub> 7.25) as internal standard.

**Table 1.** MW-characteristics of poly(MDO) obtained under various experimental conditions.

| Initiator (I)                           | [I]<br>(mol %)    | Temperature<br>(°C) | Conversion<br>(%) | $M_n(10^3)$ | $M_w/M_n$ | Refs           |
|-----------------------------------------|-------------------|---------------------|-------------------|-------------|-----------|----------------|
| Irgacure 184                            | 0.25 <sup>a</sup> | RT (UV)             | 32                | 23.9        | 1.4       | <sup>S9</sup>  |
| Irgacure 184                            | 0.25 <sup>a</sup> | RT (UV)             | 89                | 88.5        | 1.9       | <sup>S9</sup>  |
| Diethyl 2,2'-azobis(2-methylpropionate) | 3                 | 50                  | 55                | 8.4         | 4         | <sup>S10</sup> |
|                                         | 3                 | 70                  | 69                | 8.8         | 6         | <sup>S10</sup> |
| AIBN                                    | 0.042             | 65                  |                   | 7.7         | 1.8       | <sup>S3</sup>  |
| AIBN                                    | 0.044             | 65                  |                   | 6.7         | 2.0       | <sup>S3</sup>  |
| AIBN                                    | 0.08              | 65                  |                   | 7.5         | 1.6       | <sup>S3</sup>  |
| AIBN                                    | 0.13              | 65                  |                   | 13.2        | 1.9       | <sup>S3</sup>  |


|      |       |     |    |       |       |     |
|------|-------|-----|----|-------|-------|-----|
| AIBN | 0.26  | 65  |    | 13.2  | 2.2   | S3  |
| AIBN | 0.36  | 65  |    | 7.8   | 2.7   | S3  |
| AIBN | 1.2   | 85  | 97 | 5     |       | S11 |
| AIBN | 2     | 50  | 70 | 42    | 1.7   | S12 |
| AIBN | 20    | 60  | 18 | 11    | 2.7   | S13 |
| DTBP | 3     | 120 | 69 | 8.7   | 4     | S10 |
| DTBP | 3     | 150 | 97 | 9.4   | 20    | S10 |
| DTBP | 0.5-3 | 120 | 90 | 30-35 | 10-13 | S14 |

<sup>a)</sup> Concentration of radical initiator is indicated in wt %;




**Figure 1.** <sup>1</sup>H NMR spectrum of MDO with peak assignment.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$ : 1.75 (m, 4H, C-CH<sub>2</sub>-C), 3.46 (s, 2H, =CH<sub>2</sub>), 3.931 (m, 4H, OCH<sub>2</sub>).



**Figure S2.**  $^1\text{H}$  NMR spectrum of poly(MDO) ( $[\text{AIBN}] = 0.17 \text{ M}$ ,  $70^\circ\text{C}$ ) with peak assignment.  $^1\text{H}$  NMR (400 MHz,  $\text{CDCl}_3$ )  $\delta$ : 0.93 (t,  $^3J_{\text{H,H}} = 7.4 \text{ Hz}$ ,  $\text{CH}_3$ ), 1.37 (m, 2H,  $\text{C}(\text{O})\text{OCH}_2\text{CH}_2\text{CH}_2$ ), 1.55–1.67 (m, 4H,  $\text{C}(\text{O})\text{OCH}_2\text{CH}_2$  and  $\text{CH}_2\text{CH}_2\text{C}(\text{O})\text{O}$ ), 2.29 (t,  $^3J_{\text{H,H}} = 7.5 \text{ Hz}$ , 2H,  $\text{CH}_2\text{C}(\text{O})\text{O}$ ), 4.04 (m, 2H,  $\text{C}(\text{O})\text{OCH}_2$ ).



**Figure S3.**  $^1\text{H}$  NMR spectrum for the “copolymer” of MDO and styrene at  $f_{\text{MDO}} = 0.25$ . The absence of a substantial signal around 4.04 ppm, corresponding to the methylene protons  $\text{C}(\text{O})\text{OCH}_2$  in the poly(MDO) structure, indicates the actual absence of MDO units in the main chain of the polymer.

$^1\text{H}$  NMR (400 MHz,  $\text{CDCl}_3$ )  $\delta$ : 1.19–1.68 (br. s, 2H,  $\text{CH}_2$  (polystyrene)), 1.68–2.03 (br. s, 2H,  $\text{CH}$  (polystyrene)), 6.29–7.22 (br. m, 5H,  $\text{CH}_{\text{Ph}}$  (polystyrene)).

## References

[S1] S. M. McElvain and D. Kundiger, *Org. Synth.*, 1955, **3**, 123; <https://doi.org/10.1002/0471264180.os023.04>.

[S2] M. C. D. Carter, J. Jennings, V. Appadoo and D. M. Lynn, *Macromolecules*, 2016, **49**, 5514; <https://doi.org/10.1021/acs.macromol.6b01212>.

[S3] L. M. Morris, *PhD Thesis*, The University of New South Wales, Sydney, Australia, 2000; <https://doi.org/10.26190/unsworks/5889>.

[S4] M. Yu. Zaremski, E. E. Aliev, E. S. Garina and N. S. Melik-Nubarov, *Mendeleev Commun.*, 2020, **30**, 627; <https://doi.org/10.1016/j.mencom.2020.09.025>.

[S5] M. Yu. Zaremski, E. Yu. Kozhunova, S. S. Abramchuk, M. E. Glavatskaya and A. V. Chertovich, *Mendeleev Commun.*, 2021, **31**, 277; <https://doi.org/10.1016/j.mencom.2021.03.045>.

[S6] J. Brandrup, E. H. Immergut and E. A. Grulke, *Polymer handbook Fourth Edition*, eds. A. Abe, D.R. Bloch, A Wiley-Interscience Publication, New York, 1999: <https://www.wiley.com/en-us/Polymer+Handbook%2C+2+Volumes+Set%2C+4th+Edition-p-9780471479369>.

[S7] A. Schindler and Y. M. Hibionada, C. G. Pitt, *J. Polym. Sci., Polym. Chem. Ed.*, 1982, **20**, 319; <https://doi.org/10.1002/pol.1982.170200206>.

[S8] S. Mori, *J. Liq. Chromatogr.* 1990, **13**, 1719; <https://doi.org/10.1080/01483919008048988>.

[S9] F. Mehner, M. Geisler, K. Arnhold and H. Komber, J. Gaitzsch, *ACS Appl. Polym. Mater.*, 2022, **4**, 7891; <https://doi.org/10.1021/acsapm.2c01483>.

[S10] A. Tardy, N. Gil, C. M. Plummer, D. Siri, D. Gigmes, C. Lefay, Y. Guillaneuf, *Angew. Chem. Int. Ed.*, 2020, **59**, 14517; <https://doi.org/10.1002/anie.202005114>.

[S11] J. Folini, W. Murad, F. Mehner, W. Meier and J. Gaitzsch, *Eur. Polym. J.*, 2020, **134**, 109851; <https://doi.org/10.1016/j.eurpolymj.2020.109851>.

[S12] S. Jin and K. E. Gonsalves, *Macromolecules*, 1998, **31**, 1010; <https://doi.org/10.1021/ma9707289>.

[S13] B. Wu and R. W. Lenz, *J. Environ. Polym. Degrad.*, 1998, **6**, 23; <https://doi.org/10.1023/A:1022874411834>.

[S14] A. Tardy, J. Nicolas, D. Gigmes, C. Lefay and Y. Guillaneuf, *Chem. Rev.*, 2017, **117**, 1319; <https://doi.org/10.1021/acs.chemrev.6b00319>.