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The design and discovery of novel materials with tailored electronic 
properties are crucial to the advancement of fields such as 
photovoltaics, optoelectronics and energy storage. One class of 
such materials involves layered hybrid lead halide compounds 
with perovskite-derived crystal structures, or lead halide 
perovskites (LHPs). They have attracted considerable attention 
due to their tunable band gaps, which are essential for optimizing 
their performance in electronic and energy-related applications.1–5 

However, accurate theoretical prediction of the band gaps in these 
materials remains challenging due to the complex interplay of their 
atomic and electronic structures.6,7

In recent years, machine learning has emerged as a powerful 
tool to accelerate materials discovery by predicting key properties 
such as the band gap in LHPs from structural data.8–10 The band gap 
is known to depend on a number of geometric descriptors in LHPs, 
including metal–halogen bond lengths, bond angles between 
atoms in the inorganic substructure, layer shift factor and some 
others.6,11–13 However, modern machine learning algorithms are 
plausible to input crystal structure information written universally, 
such as a multidimensional vector. Topological representation 
methods that capture the spatial arrangement and connectivity of 
atoms in a material have shown promise in enhancing the accuracy 
of machine learning models. In this context, developing efficient 
topological descriptors for hybrid halide compounds could 
significantly improve our ability to predict their electronic 
behavior. This article explores the topological representation14 of 
layered hybrid lead halide compounds and its application to 
machine learning models for band gap prediction.

In this work, we utilized a dataset comprising 140 two-
dimensional perovskite-related crystal structures exhibiting the 
(100) structural type, characterized by a perovskite block thickness 

of n = 1. This dataset† was sourced from the published work,8 
wherein the band gap values had previously been calculated with 
high precision using density functional theory (DFT) methods. 
Each material in the database is encoded in the Crystallographic 
Information File (CIF) format and is available for unrestricted 
access. The website provides comprehensive descriptions of the 
materials’ properties, including DFT-derived and experimental band 
gap values, chemical formulas, space groups and other relevant data.

Figure  1 illustrates the construction of barcodes for two-
dimensional perovskite materials. Our methodology encompasses 
several essential steps. Initially, from the crystallographic informa
tion files (.cif) contained in the dataset, we systematically extract 
various types of atoms occupying different crystallographic sites 
and their combinations within the unit cell. Around each atom in 
the unit cell, a sphere is constructed within a cutoff radius, which 
contains a cloud of points (atoms). Then, for each sphere, the 
number of bonds and the distances between atoms are calculated, 
which are reflected in the barcode as lines.‡ The number of lines 
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†	 The complete dataset on the two-dimensional perovskites employed in 
this investigation is available on the official website of the NMSE 
database: http://www.pdb.nmse-lab.ru/.
‡	 To generate the barcodes, we set a cutoff radius of 10 Å for the point 
cloud region surrounding each atom. For LHP structures, this radius is 
optimal since interactions between adjacent layers of lead–halogen octahedra 
are possible up to such distances. By calculating the bond lengths from the 
central atom to its neighboring atoms, the resulting barcode encapsulates 
the geometric and topological characteristics of the structure. In Figure 1, 
the solid lines indicate contacts in pairs of atoms within the designated 
sphere, the number of lines corresponds to the frequency of these contacts 
in the unit cell, while the line lengths represent the distances between atoms. 
The order of the lines in the barcode can be chosen arbitrarily. In addition 
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means the number of bonds, and their lengths represent the 
interatomic distances. In this way, we obtain an atom-specific 
topological fingerprint representation14 for the LHP to extract 
detailed crystal information pertinent to machine learning 
applications. The topology of these structures is encoded as specific 
barcodes. Utilizing this topological representation, we applied the 
gradient boosting tree model15 to predict the band gaps of the 
materials.

The methodology and algorithm for constructing specific 
barcodes in Python were developed as outlined previously.14 
The fundamental concept underlying this approach is that there 
are a limited number of atoms in a unit cell, each characterized 
by a distinctive structural environment that defines its unique 
topological fingerprints. This approach is universal and invariant 
since heterogeneous parameters such as unit cell parameters, 
angles and atomic coordinates are not involved in representing 
crystal structure descriptors. All geometric parameters in this 
representation are presented homogeneously as interatomic distances 
in the local environment of each atom. As an example, for the (100) 
layered hybrid lead halide crystal structure with n = 1, combinations 
of three significant atomic pairs Pb–X, X–X and N–X (X is a 
halogen atom) are identified as having a substantial impact on 
the band structure of the material.12,18 The changes in interatomic 
distances in these three pairs make a significant contribution to 
the change in the LHP band gaps compared to the changes in 
distances in other atomic pairs.

Thus, as a result of converting the classical CIF of the crystal 
structure into a barcode, we obtain a data set that is easy to 
represent in a machine-readable form as a multidimensional vector 
due to the homogeneity of the data representation. Such information 
is easy to process using modern libraries for machine learning. 
Compared with other machine-readable crystal structure 
representations based on structure graphs and Coulomb matrices,19 
topological descriptors using persistent homology have the 

advantage of uniquely encoding structures at both local and global 
levels without requiring assumptions about the underlying 
physics. We chose gradient boosted regression trees (GBRT)15 as 
the machine learning algorithm to evaluate the accuracy, robustness 
and efficiency of the topological-based features.§ 
The  performance metrics for the model predicting band gaps 
using topological feature vectors were as follows: R2 = 0.8, 
RMSE = 0.17 eV and MAE = 0.12 eV (Figure 2). These results 
are consistent with contemporary machine learning models aimed 
at predicting the band gaps in hybrid perovskites.8,10 Furthermore, 
a commendable MAE was achieved despite the limited size of 
the dataset. Thus, the representation of crystal LHP structures as 
barcodes is a good general-purpose machine-readable 
representation for the targeted design of this class of materials.

Beyond LHP materials, this approach presents opportunities 
for addressing both the direct problem (predicting the physical 
properties of materials from their crystal structure) and the inverse 
problem (predicting crystal structures with desired properties) 
for other hybrid materials related to the group of hybrid lead halides, 
including those with 3D, 1D and 0D inorganic substructures. 
Future advancements in this methodology will focus on predicting 
and decoding barcodes into potential sets of promising crystal 
structures.

to the topological information, composition-based features were 
incorporated, which include stoichiometric attributes reflecting elemental 
fractions, elemental property statistics derived from all atoms in the 
crystal and electronic structure attributes.
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Figure  1  The main stages of constructing a barcode of the LHP crystal structure. Crystal structures were visualized using the Vesta16 and TOPOSpro17 
programs.

§	 GBRT effectively integrates multiple weak predictors to formulate a 
robust model. The training process involves sequentially adding trees to 
diminish the loss function of the current model. To mitigate overfitting, each 
model update utilizes various randomly selected subsets of both training 
data and features. Hyperparameter optimization was performed through 
cross-validation, evaluated using the R2 metric. The hyperparameters 
used in GBRT include: n_estimators = 300 000, learning_rate = 0.001, 
max_depth = 7, min_samples_split = 5, subsample = 0.85 and max_
features = sqrt. The machine learning models were constructed using 
scikit-learn software (version 0.19.2) as indicated in the previous work.20 
A ten-fold cross-validation approach was utilized to validate the proposed 
methodology, with random splitting of the data repeated 20 times to assess 
the robustness of the model. The median performance metrics and standard 
deviation across these repeated experiments were documented. Voronoi 
tessellations and Coulomb matrices were replicated using Magpie, which 
is freely available under an open-source license.21
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In summary, we have shown that the topological representation 
of crystal structures is suitable as a machine-readable representation 
of the organic–inorganic periodic structures for machine learning 
algorithms. Using this invariant representation, machine learning 
algorithms successfully predict composition–structure–property 
relationships for LHP materials.

This work was supported by the Interdisciplinary Scientific and 
Educational Schools of Lomonosov Moscow State University 
(grant no. 23-Sh03-04).
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Figure  2  Comparison of the band gap values calculated by DFT with those 
predicted by the machine learning algorithm for 2D hybrid lead halide 
materials.


