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Prediction of band gaps in layered hybrid halide compounds
promising for photovoltaic and optoelectronic applications
was performed using a machine learning approach. In order
to facilitate the discovery and design of new hybrid halide
materials with tailored electronic properties, machine
learning models were enhanced with invariant topological
representations of these materials using the atom-specific
persistent homology method.
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The design and discovery of novel materials with tailored electronic
properties are crucial to the advancement of fields such as
photovoltaics, optoelectronics and energy storage. One class of
such materials involves layered hybrid lead halide compounds
with perovskite-derived crystal structures, or lead halide
perovskites (LHPs). They have attracted considerable attention
due to their tunable band gaps, which are essential for optimizing
their performance in electronic and energy-related applications. =
However, accurate theoretical prediction of the band gaps in these
materials remains challenging due to the complex interplay of their
atomic and electronic structures.®’

In recent years, machine learning has emerged as a powerful
tool to accelerate materials discovery by predicting key properties
such as the band gap in LHPs from structural data.®'° The band gap
is known to depend on a number of geometric descriptors in LHPs,
including metal-halogen bond lengths, bond angles between
atoms in the inorganic substructure, layer shift factor and some
others.®!'=13 However, modern machine learning algorithms are
plausible to input crystal structure information written universally,
such as a multidimensional vector. Topological representation
methods that capture the spatial arrangement and connectivity of
atoms in a material have shown promise in enhancing the accuracy
of machine learning models. In this context, developing efficient
topological descriptors for hybrid halide compounds could
significantly improve our ability to predict their electronic
behavior. This article explores the topological representation'* of
layered hybrid lead halide compounds and its application to
machine learning models for band gap prediction.

In this work, we utilized a dataset comprising 140 two-
dimensional perovskite-related crystal structures exhibiting the
(100) structural type, characterized by a perovskite block thickness
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of n=1. This dataset’ was sourced from the published work,?
wherein the band gap values had previously been calculated with
high precision using density functional theory (DFT) methods.
Each material in the database is encoded in the Crystallographic
Information File (CIF) format and is available for unrestricted
access. The website provides comprehensive descriptions of the
materials’ properties, including DFT-derived and experimental band
gap values, chemical formulas, space groups and other relevant data.

Figure 1 illustrates the construction of barcodes for two-
dimensional perovskite materials. Our methodology encompasses
several essential steps. Initially, from the crystallographic informa-
tion files (.cif) contained in the dataset, we systematically extract
various types of atoms occupying different crystallographic sites
and their combinations within the unit cell. Around each atom in
the unit cell, a sphere is constructed within a cutoff radius, which
contains a cloud of points (atoms). Then, for each sphere, the
number of bonds and the distances between atoms are calculated,
which are reflected in the barcode as lines.* The number of lines

¥ The complete dataset on the two-dimensional perovskites employed in
this investigation is available on the official website of the NMSE
database: http://www.pdb.nmse-lab.ru/.

 To generate the barcodes, we set a cutoff radius of 10 A for the point
cloud region surrounding each atom. For LHP structures, this radius is
optimal since interactions between adjacent layers of lead—halogen octahedra
are possible up to such distances. By calculating the bond lengths from the
central atom to its neighboring atoms, the resulting barcode encapsulates
the geometric and topological characteristics of the structure. In Figure 1,
the solid lines indicate contacts in pairs of atoms within the designated
sphere, the number of lines corresponds to the frequency of these contacts
in the unit cell, while the line lengths represent the distances between atoms.
The order of the lines in the barcode can be chosen arbitrarily. In addition
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Figure 1 The main stages of constructing a barcode of the LHP crystal structure. Crystal structures were visualized using the Vesta'® and TOPOSpro!”

programs.

means the number of bonds, and their lengths represent the
interatomic distances. In this way, we obtain an atom-specific
topological fingerprint representation'* for the LHP to extract
detailed crystal information pertinent to machine learning
applications. The topology of these structures is encoded as specific
barcodes. Utilizing this topological representation, we applied the
gradient boosting tree model'® to predict the band gaps of the
materials.

The methodology and algorithm for constructing specific
barcodes in Python were developed as outlined previously.'*
The fundamental concept underlying this approach is that there
are a limited number of atoms in a unit cell, each characterized
by a distinctive structural environment that defines its unique
topological fingerprints. This approach is universal and invariant
since heterogeneous parameters such as unit cell parameters,
angles and atomic coordinates are not involved in representing
crystal structure descriptors. All geometric parameters in this
representation are presented homogeneously as interatomic distances
in the local environment of each atom. As an example, for the (100)
layered hybrid lead halide crystal structure with n = 1, combinations
of three significant atomic pairs Pb—X, X-X and N-X (X is a
halogen atom) are identified as having a substantial impact on
the band structure of the material.'>'3 The changes in interatomic
distances in these three pairs make a significant contribution to
the change in the LHP band gaps compared to the changes in
distances in other atomic pairs.

Thus, as a result of converting the classical CIF of the crystal
structure into a barcode, we obtain a data set that is easy to
represent in a machine-readable form as a multidimensional vector
due to the homogeneity of the data representation. Such information
is easy to process using modern libraries for machine learning.
Compared with other machine-readable crystal structure
representations based on structure graphs and Coulomb matrices, '°
topological descriptors using persistent homology have the

to the topological information, composition-based features were
incorporated, which include stoichiometric attributes reflecting elemental
fractions, elemental property statistics derived from all atoms in the
crystal and electronic structure attributes.

advantage of uniquely encoding structures at both local and global
levels without requiring assumptions about the underlying
physics. We chose gradient boosted regression trees (GBRT)' as
the machine learning algorithm to evaluate the accuracy, robustness
and efficiency of the topological-based features.’
The performance metrics for the model predicting band gaps
using topological feature vectors were as follows: R?>=0.8,
RMSE =0.17 eV and MAE =0.12 eV (Figure 2). These results
are consistent with contemporary machine learning models aimed
at predicting the band gaps in hybrid perovskites.®!? Furthermore,
a commendable MAE was achieved despite the limited size of
the dataset. Thus, the representation of crystal LHP structures as
barcodes is a good general-purpose machine-readable
representation for the targeted design of this class of materials.

Beyond LHP materials, this approach presents opportunities
for addressing both the direct problem (predicting the physical
properties of materials from their crystal structure) and the inverse
problem (predicting crystal structures with desired properties)
for other hybrid materials related to the group of hybrid lead halides,
including those with 3D, 1D and OD inorganic substructures.
Future advancements in this methodology will focus on predicting
and decoding barcodes into potential sets of promising crystal
structures.

8 GBRT effectively integrates multiple weak predictors to formulate a
robust model. The training process involves sequentially adding trees to
diminish the loss function of the current model. To mitigate overfitting, each
model update utilizes various randomly selected subsets of both training
data and features. Hyperparameter optimization was performed through
cross-validation, evaluated using the R? metric. The hyperparameters
used in GBRT include: n_estimators = 300 000, learning_rate = 0.001,
max_depth =71, min_samples_split=5, subsample =0.85 and max_
features = sqrt. The machine learning models were constructed using
scikit-learn software (version 0.19.2) as indicated in the previous work.?
A ten-fold cross-validation approach was utilized to validate the proposed
methodology, with random splitting of the data repeated 20 times to assess
the robustness of the model. The median performance metrics and standard
deviation across these repeated experiments were documented. Voronoi
tessellations and Coulomb matrices were replicated using Magpie, which
is freely available under an open-source license.?!
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Figure 2 Comparison of the band gap values calculated by DFT with those
predicted by the machine learning algorithm for 2D hybrid lead halide
materials.

In summary, we have shown that the topological representation
of crystal structures is suitable as a machine-readable representation
of the organic—inorganic periodic structures for machine learning
algorithms. Using this invariant representation, machine learning
algorithms successfully predict composition—structure—property
relationships for LHP materials.

This work was supported by the Interdisciplinary Scientific and
Educational Schools of Lomonosov Moscow State University
(grant no. 23-Sh03-04).
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