Mendeleev

Communications

Mendeleev Commun., 2025, 35, 130-132

Synthesis, HPLC isolation and structural characterization
of three new Cg((CF3),5 isomers
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Three new Cg)(CF3);g3 isomers have been synthesized by
high-temperature trifluoromethylation of [60]fullerene
with gaseous CF;l, isolated by HPLC, and structurally
characterized by single crystal X-ray diffraction using
synchrotron radiation.
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Trifluoromethylated fullerenes Cg, and C;, represent the large
group of compounds which are obtained, separated and
structurally characterized experimentally and considered
theoretically.!-3 Until recently, the numbers of structurally
studied isomers Cgo(CF;), were 13 (n=10),"* 6 (n=12),>°
3(n=14),' 3(n=16),” and 2 (n = 18).78 According to MS data
of raw trifluoromethylation products, the maximum number of
attached CF; groups is 20° but no molecular structure of
Cg0(CF3)5y is known. In the last few years, owing to the
development of HPLC separation methods and X-ray structure
determination facilities, the number of isolated and structurally
characterized Cgy(CF3), (n =12, 14, 16) has been increased
considerably and has reached 9,'° 15,'" and 11,'2 respectively. In
the present communication, we report the synthesis, isolation,
and structural studies of three new Cgy(CF3);q isomers, thus
increasing the number of structurally characterized isomers to
five.

The synthesis of Cgy(CF;), derivatives was performed in
ampoules by the reaction of Cg fullerene with CF;I at 420 °C for
36-48 h as previously described.!" The reaction product was
dissolved in n-hexane and subjected to HPLC separation in
n-hexane using a semipreparative Cosmosyl Buckyprep column,
2.3 ml min~'. The composition of the HPLC fractions was
controlled by MALDI-TOF mass spectrometry.” In the first
HPLC separation stage, several fractions gave crystals of the
early reported isomers of Cgo(CF3),-1II and -V, Cqo(CF3) 4-111,
Cy0(CF3) -1 and Cyy(CF;);5-I (Roman figures correspond to the
isomers numeration used in refs. 7, 10-12).

The fraction with retention time 6.7 min was additionally
separated using a semipreparative Cosmosyl Buckyprep-D
column thus producing isomerically pure or nearly pure

T Experimental details. HPLC separation was carried out by means of a
Waters LC system equipped with semipreparative Cosmosyl Buckyprep
and Cosmosyl Buckyprep-D columns (both 10 I.D.x250 mm). The
negative-ion MALDI mass spectra were acquired using a Bruker
AutoFlex II reflector time-of-flight mass spectrometer (N, laser, 337 nm,
2.5 ns pulse). 2-[(2E)-3-(4-tert-butylphenyl)-2-methylprop-2-enylidene]-
malononitrile (DCTB) employed as a matrix.
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subfractions of Cgy(CFz);3 and Cg(CF3);30, compounds
(n=1,2) (Figure 1).

Cyo(CF3)5 crystals were grown from the solutions in hexane;
because of typically very small size of the crystals their X-ray
diffraction study was performed with the use of synchrotron
radiation.*

New isomers were designated as 18-1I1, -IV and -V according
to increasing elution times; their IUPAC lowest-locant
abbreviations'? are 1, 3, 6, 11, 13, 18, 22, 25, 28, 31, 34, 37, 41,

18-1I1
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Figure 1 Second step HPLC separation using a semipreparative Cosmosyl
Buckyprep-D column, n-hexane, 2.3 ml min~!. The composition of HPLC
fractions was determined by MALDI-MS and confirmed for fraction 18-I1I-
18-V by X-ray crystallography. The fractions eluted at 7.5 and 7.7 min
contained Cg)(CF;3);5 species of unknown molecular structures.

¥ Crystal data. Synchrotron X-ray diffraction data for 18-111-18-V were
collected at 100 K at the BESSY storage ring (BL14.3, Berlin, Germany)
using a MAR225 CCD detector (A = 0.8950 10%). The crystal structures
were solved by SHELXD and anisotropically refined with SHELXL..

Ceo(CF3)3 (18-I1I), monoclinic, P2/n, a=13.811(1), b =21.518(2)
and ¢ = 20.874(2) A, B = 96.947(8)°, V= 6157.9(9) A3, Z=4, R, = 0.062
with 7502 reflections [/ > 20(1)], wR, = 0.189 with 10099 reflections and
1217 parameters.

Ceo(CF3)1g (18-1V), triclinic, P1, a=11.985(1), b=14.117(1) and
c=20.6921(8) A, «=89.893(5)°, f=74.823(4)°, y=065.627(7)°,
V=3055.2(4) A3, Z=2, R, = 0.047 with 10623 reflections [I> 20(I)],
wR, = 0.136 with 12035 reflections and 1189 parameters.
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Figure 2 Projections of C,-Cgy(CF3)g-1II, Ci-Cqo(CF3)15-IV  and
C-Cgo(CF3)15-V molecules. Isomer 18-111 is viewed along a C, axis whereas
isomer 18-IV is presented parallel to the mirror plane. C—C bonds with
ortho CF5 attachments are shown in red. In C;-Cg)(CF;)5-V molecule, the
cage pentagon unoccupied with CF; groups are indicated with blue color.

43, 45, 50, 53, 60-C¢,(CF3)g, 1, 3, 6, 11, 13, 18, 21, 26, 33, 38,
42,44, 46, 49, 51, 53, 55, 56-C4((CF3)5, and 1, 3, 6, 11, 13, 18,
22, 24, 27, 32, 33, 37, 41, 43, 46, 51, 54, 59-C4\(CF3);3,
respectively.

Molecular structures of C,-Cgo(CF3)5-11I, C-Cgo(CF3)5-IV
and C;-Cg)(CF3)5-V are presented in Figure 2. The axis and
mirror symmetries indicated for isomers 18-III and 18-IV
correspond to the idealized geometry of the respective
molecules. The results of X-ray structure determination revealed
only very small deviations of symmetry connected bond lengths
(Iess or equal to 2 esd’s) from the idealized geometry of both
molecules. In structure 18-IV, rotation angles of some CF;
groups around C—CF; bonds distort the strict C; symmetry more
considerably.

Formation energies of Cg,(CF;);3 molecules were calculated
on the DFT level of theory.l‘“16 Overall, relative formation
energy are close to the data reported previously!” with the most
stable isomer Cj,-Cgo(CF3)g-11 (18-1) and the least stable
isomer C;-Cg)(CF;3)5-V (18-V) (see Figure 3). The addition
patterns of all five Cy((CF3);g isomers are presented as Schlegel
diagrams in Figure 3. Characteristic structural fragments are
isolated double C=C bonds surrounded by four C atoms with sp?
hybridization. Partially isolated C=C bonds have only three sp?
carbon neighbours. Both types of isolated C=C bonds have
lengths in the range of 1.33-1.35 A. Another stabilizing structural
fragment is a benzenoid ring i.e., hexagon surrounded by six (or
only five) sp> carbon atoms as shown in Figure 3. Two fully
isolated benzenoid rings are found in isomer 18-II. Carbon cage
of isomer 18-V contains one completely isolated benzenoid ring
whereas benzenoid rings of other isomers are partially isolated:
18-1 (1 ring), 18-1II (2), 18-IV (2) and 18-V (1). Averaged C-C
bond lengths in benzenoid rings are in the range of 1.39-1.40 A.
The attachment of CF; groups (as comparatively bulky addends)
in ortho position of the cage is believed to be a destabilizing
factor. Such ortho contacts are present in isomers 18-IV and
18-V (see Figure 2). The ortho contact in isomer 18-IV (1.573 A)
is a part of a so-called skewed pentagonal pyramid (SPP)
arrangement'® with butadiene-like C=C—C=C fragment in the
pentagon (bond lengths of 1.34, 1.46, and 1.35 A) as depicted in
Figure 3. An ortho contact in SPP is likely to facilitate a
detachment of one CF; group. That is why isomer 18-IV gives
the fragment ion Cg((CF;);7 as a main peak in the MALDI mass

Ceo(CF3) 5 (18-V), monoclinic, P2,/n, a =11.649(1), b =21.8909(6)
and ¢=24.21418) A, B=102.770(9)°, V=6022.0(6) A3, Z=4,
R, =0.116 with 9390 reflections [/ > 20(])], wR, =0.326 with 13744
reflections and 1590 parameters. In the crystal packing, two enantiomeric
molecules are overlapped in the same crystallographic site.

CCDC 2369558-2369560 contain the supplementary crystallographic
data for this paper. These data can be obtained free of charge
from The Cambridge Crystallographic Data Centre via https:/
www.ccde.cam.ac.uk.

18-V (33.8)

18-11I (10.6) 18-1V (9.2)

Figure 3 Schlegel diagrams of five Cy((CF;)g isomers, three of which,
18-11I-18-V, were structurally characterized in this work. Cage pentagons
are highlighted in red. Black circles denote the positions of CF; attachments.
Depositions of completely and partially isolated benzenoid rings are
indicated by solid and dashed ellipses, respectively. The butadiene-like
fragment in the SPP arrangement is also shown. The positions of two-fold
axes in isomer C,-Cg)(CF3);g (18-III) are indicated by small crosses.
Theoretically calculated relative formation energies are given in parentheses
in kJ mol..

spectrum whereas molecular species Cg(CF3) g dominate in the
mass spectra of other isomers. It is of interest that the most stable
isomer 18-II contains three unoccupied pentagons on a carbon
cage whereas non such pentagons are found in 18-1II, 18-1V and
only one such pentagon is present in the least stable isomers 18-1
and 18-V (see Figure 2). In fact, destabilizing effect of the
presence of unoccupied pentagons is compensated by the
formation of additional partially isolated C=C bonds in such
pentagons.

Most similar are the addition pattern of isomers 18-II and
18-V with 15 common CFj; attachment positions as can be seen
in Figure 3. Isomers 18- and 18-III have 14 common CF;
attachments. The addition pattern of isomer 18-1V differs from
that of other isomers more considerably because it possesses
only 11 common CF; attachments with isomers 18-I, 18-III and
18-V. Note that the addition patterns of isomers 18-1 and 18-V
have 16 common CF; attachment positions with known isomers
16-T and 16-I11, respectively,'? which can be regarded as possible
precursors of the corresponding Cg)(CF3),g isomers.

In summary, three new Cg)(CF;);q isomers have been
synthesized, chromatographically isolated, and structurally
characterized by X-ray crystallography. The addition patterns
and relative formation energies of all five known Cgy(CF3);5
isomers are discussed in terms of molecular symmetry, the
presence of isolated C-C bonds, benzenoid rings, SPP
substructures and unoccupied pentagons on the Cg, carbon cage.
With this and our recently published works on Cq(CF3)12 14,16
the number of structurally characterized isomers Cgn(CF3),,
(2n = 2-18) reached as many as 68.

This work was supported by the project ‘Chemical thermo-
dynamics and theoretical material science’ (no. 121031300039-1).
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