

**Extraordinary sulfur/oxygen exchange between P=S and C=O bonds
during the reaction of γ -amino yrones with secondary phosphine sulfides**

**Pavel A. Volkov, Svetlana I. Verkhoturova, Svetlana N. Arbuzova, Kseniya O. Khrapova,
Ivan A. Bidusenko, Sergey V. Zinchenko and Boris A. Trofimov**

Table of contents

1. General information	S2
2. Synthesis of 1,2-dihydro-3<i>H</i>-pyrrole-3-thiones 3a-m: General procedure.	S2
3. NMR Spectra	S5

1. General information

All reactions were carried out under an argon atmosphere. Amino yrones **1a-m** were prepared from propargylic amines and acyl chlorides as previously described.^{S1} Diphenylphosphine sulfide **2a** was prepared by oxidation of commercially available diphenylphosphine (Aldrich) with elemental sulfur.^{S2} Phosphine sulfides **2b,c** were prepared from styrene and elemental phosphorus as previously described.^{S3} The ¹H and ¹³C NMR spectra were recorded on a Bruker DPX 400 and Bruker AV-400 spectrometers (400.13 and 100.62 MHz, respectively) in CDCl₃ solutions and referenced to HMDS (¹H, ¹³C). The assignment of signals in ¹H spectra was performed using 2D homonuclear correlation method COSY. Resonance signals of ¹³C were assigned with application of 2D heteronuclear correlation methods HSQC and HMBC. Mass spectra were recorded on an Agilent 6210 HRMS-TOF-ESI Mass spectrometer. Electrostatic sputtering, registration of positive ions. Sample solvent – MeCN with the addition of 0.1% formic acid and with the addition of calibration mixture for mass spectrometer.

2. Synthesis of 1,2-dihydro-3*H*-pyrrole-3-thiones **3a-m**: General procedure.

Synthesis of 1,2,5-trisubstituted-1,2-dihydro-3*H*-pyrrole-3-thiones **3: General procedure.** A solution of bis(2-phenylethyl)phosphine sulfide **2b** (0.137 g, 0.5 mmol), amino yrones **1a-m** (0.5 mmol) and 5 eq. H₂O in MeCN (2 ml) was stirred under an argon atmosphere at 80-85 °C for 41-72 h (see also Table 1, Schemes 1,2 of the main text). After completion of the reaction (³¹P NMR monitoring or TLC, eluent: benzene/Et₂O, 10:1), the solvent was removed under the reduced pressure. The residue was purified by column chromatography on SiO₂ (eluent: benzene/Et₂O, 10:1), the solution was dried *in vacuo* to obtain the corresponding 1,2-dihydro-3*H*-pyrrole-3-thiones **3a-m**.

2-Methyl-1,2,5-triphenyl-1,2-dihydro-3*H*-pyrrole-3-thione (3a). Reaction time 48 h. Yield: 90 mg (53%); crimson powder, mp 153–156 °C (reprecipitated from CCl₄ to hexane). The ¹H and ¹³C NMR spectra are in accordance with the published^{S4} data. HRMS (ESI-TOF) calcd for [C₂₃H₁₉NS + H]⁺ 342.13164, found 342.13179.

5-(4-Chlorophenyl)-2-methyl-1,2-diphenyl-1,2-dihydro-3*H*-pyrrole-3-thione (3b). Reaction time 42 h. Yield: 66 mg (35%); dark red powder, mp 87–88 °C (reprecipitated from CCl₄ to hexane). The ¹H and ¹³C NMR spectra are in accordance

with the published^{S4} data. HRMS (ESI-TOF) calcd for [C₂₃H₁₈ ClNS + H]⁺ 376.09267, found 376.09218.

5-(4-Ethylphenyl)-2-methyl-1,2-diphenyl-1,2-dihydro-3H-pyrrole-3-thione (3c). Reaction time 48 h. Yield: 77 mg (42%); red powder, mp 150–151 °C (reprecipitated from CCl₄ to hexane). The ¹H and ¹³C NMR spectra are in accordance with the published^{S4} data. HRMS (ESI-TOF) calcd for [C₂₅H₂₃NS + H]⁺ 370.16294, found 370.16284.

5-(Furan-2-yl)-2-methyl-1,2-diphenyl-1,2-dihydro-3H-pyrrole-3-thione (3d). Reaction time 42 h. Yield: 33 mg (20%); waxy product. The ¹H and ¹³C NMR spectra are in accordance with the published^{S4} data. HRMS (ESI-TOF) calcd for [C₂₁H₁₇NOS + H]⁺ 332.11091, found 332.11066.

2-Methyl-1,2-diphenyl-5-(thiophen-2-yl)-1,2-dihydro-3H-pyrrole-3-thione (3e). Reaction time 41 h. Yield: 43 mg (25%); burgundy powder, mp 153–155 °C (reprecipitated from CCl₄ to hexane). The ¹H and ¹³C NMR spectra are in accordance with the published^{S4} data. HRMS (ESI-TOF) calcd for [C₂₁H₁₇NS₂ + H]⁺ 348.08807, found 348.08838.

5-Cyclohexyl-2-methyl-1,2-diphenyl-1,2-dihydro-3H-pyrrole-3-thione (3f).^{S4} Reaction time 72 h. Yield: 5% (according to ¹H NMR). ¹H NMR (400.13 MHz, CDCl₃): δ 1.75 (s, 3H, Me); 6.48 (s, 1H, H-4, pyrrolethione); 6.72–6.73 (m, 2H, H_o, NPh); 7.26–7.36 (m, 6H, H_{m,p}, NPh; H_{m,p}, PhC-2). Other signals of 1,2-dihydro-3H-pyrrole-3-thione **3f** are overlapped with signals of side products.

2-Methyl-1,5-diphenyl-2-(thiophen-2-yl)-1,2-dihydro-3H-pyrrole-3-thione (3g). Reaction time 48 h. Yield: 81 mg (47%); waxy product. The ¹H and ¹³C NMR spectra are in accordance with the published^{S4} data. HRMS (ESI-TOF) calcd for [C₂₁H₁₇NS₂ + H]⁺ 348.08807, found 348.08820.

1,2-Diphenyl-1-azaspiro[4.5]dec-2-ene-4-thione (3h). Reaction time 56 h. Yield: 51 mg (32%); waxy product. The ¹H and ¹³C NMR spectra are in accordance with the published^{S4} data. HRMS (ESI-TOF) calcd for [C₂₁H₂₁NS + H]⁺ 320.14730, found 320.14720.

2-(Furan-2-yl)-1-phenyl-1-azaspiro[4.5]dec-2-ene-4-thione (3i). Reaction time 52 h. Yield: 54 mg (35%); waxy product. The ¹H and ¹³C NMR spectra are in accordance with the published^{S4} data. HRMS (ESI-TOF) calcd for [C₁₉H₁₉NOS + H]⁺ 310.12656, found 310.12672.

1-Phenyl-2-(thiophen-2-yl)-1-azaspiro[4.5]dec-2-ene-4-thione (3j). Reaction time 52 h. Yield: 54 mg (33%); waxy product. The ¹H and ¹³C NMR spectra are in

accordance with the published^{S4} data. HRMS (ESI-TOF) calcd for [C₁₉H₁₉NS₂ + H]⁺ 326.10372, found 326.10359.

1-Phenyl-2-(thiophen-2-yl)-1-azaspiro[4.6]undec-2-ene-4-thione (3k). Reaction time 51 h. Yield: 66 mg (38%); waxy product. The ¹H and ¹³C NMR spectra are in accordance with the published^{S4} data. HRMS (ESI-TOF) calcd for [C₂₀H₂₁NS₂ + H]⁺ 340.11937, found 340.11958.

2-Methyl-2-(naphthalen-2-yl)-1,5-diphenyl-1,2-dihydro-3H-pyrrole-3-thione(3l).

Reaction time 72 h. **Yield:** 7% (according to ¹H NMR). ¹H NMR (400.13 MHz, CDCl₃): 1.78 (s, 3H, Me); 6.46 (s, 1H, H-4, pyrrolethione); 6.60-6.64 (m, 2H, H_o, NPh); 7.50–7.55 (m, 2H, H-3,7, napht); 7.85–7.88 (m, 4H, H-1,4,6,8, napht). Other signals of 1,2-dihydro-3H-pyrrole-3-thione **3l** are overlapped with signals of side products.

1-(4-Chlorophenyl)-2-(furan-2-yl)-2-methyl-5-phenyl-1,2-dihydro-3H-pyrrole-3-thione (3m). Reaction time 50 h. Yield: 9% (according to ¹H NMR). ¹H NMR (400.13 MHz, CDCl₃): δ 1.82 (s, 3H, Me); 6.28-6.31 (m, 2H, H-3,4, furyl); 6.80-6.85 (m, 3H, H-2,6, NC₆H₄Cl; H-4, pyrrolethione); 7.39-7.41 (m, 1H, H-5, furyl). Other signals of 1,2-dihydro-3H-pyrrole-3-thione **3m** are overlapped with signals of side products.

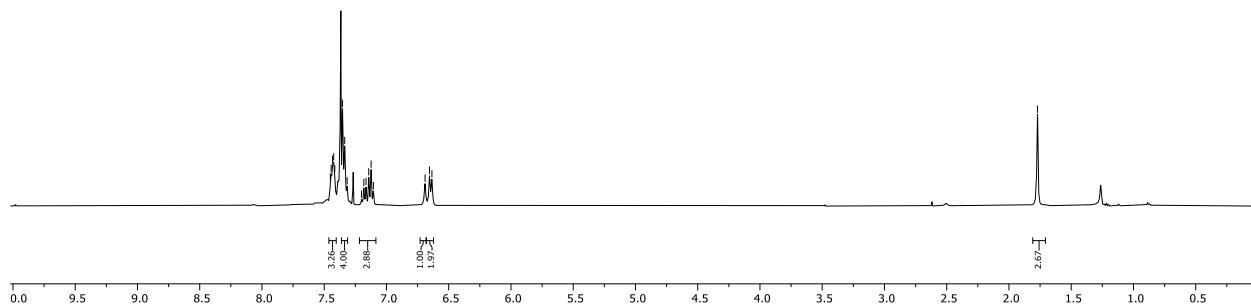
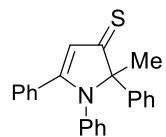
References

S1. (a) P. A. Volkov, K. O. Khrapova, I. A. Bidusenko, A. A. Telezhkin, E. Yu. Schmidt, A. I. Albanov and B. A. Trofimov, *Russ. Chem. Bull.*, 2022, **71**, 1514; <https://doi.org/10.1007/s11172-022-3558-3>; (b) P. A. Volkov, K. O. Khrapova, A. A. Telezhkin, I. A. Bidusenko, E. Yu. Schmidt, A. I. Albanov and B. A. Trofimov, *Adv. Synth. Catal.*, 2023, **365**, 53; <https://doi.org/10.1002/adsc.202201179>.

S2. G. Peters, *J. Am. Chem. Soc.* 1960, **82**, 4751; <https://doi.org/10.1021/ja01502a082>.

S3. (a) N. K. Gusarova, M. V. Bogdanova, N. I. Ivanova, N. A. Chernysheva, B. G. Sukhov, L. M. Sinegovskaya, O. N. Kazheva, G. G. Alexandrov, O. A. D'yachenko and B. A. Trofimov, *Synthesis*, 2005, 3103; <https://doi.org/10.1055/s-2005-918408>; (b) N. K. Gusarova and B. A. Trofimov, *Russ. Chem. Rev.*, 2020, **89**, 225; <https://doi.org/10.1070/RCR4903>.

S4. P. A. Volkov, K. O. Khrapova, E. M. Vyi, A. A. Telezhkin, I. A. Bidusenko, A. I. Albanov, E. Yu. Schmidt and B. A. Trofimov, *Org. Biomol. Chem.*, 2023, **21**, 6903; <https://doi.org/10.1039/D3OB01061A>.

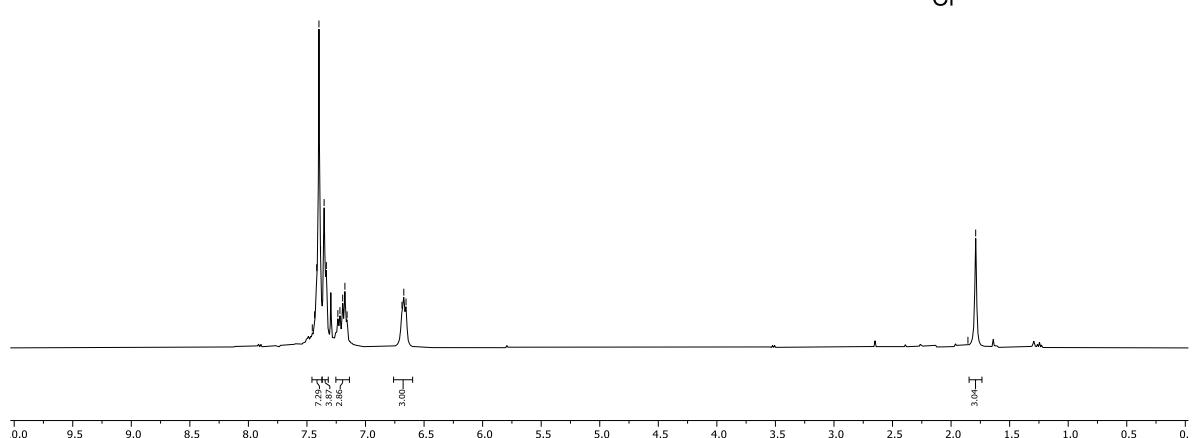
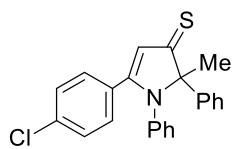


3. NMR Spectra

2-Methyl-1,2,5-triphenyl-1,2-dihydro-3H-pyrrole-3-thione (3a)

NMR_1H

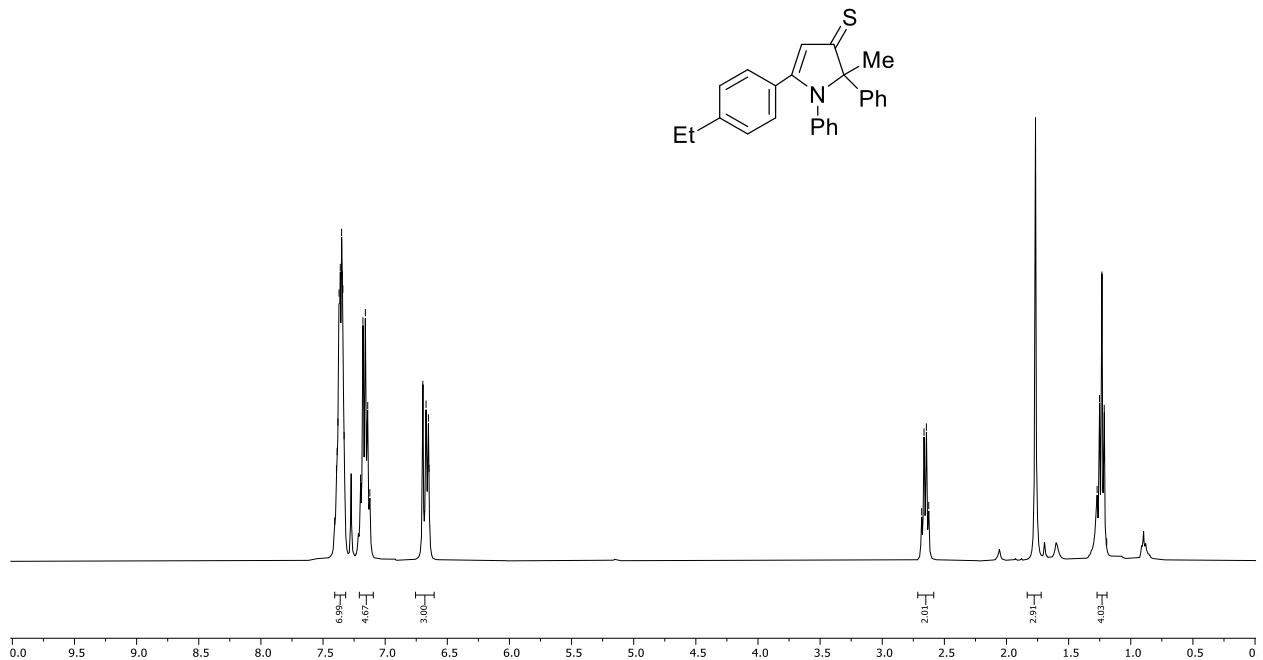
7.45
7.44
7.42
7.42
7.35
7.34
7.34
7.33
7.33
7.20
7.18
7.16
7.14
7.14
7.10
6.69
6.65
6.63

— 1.77

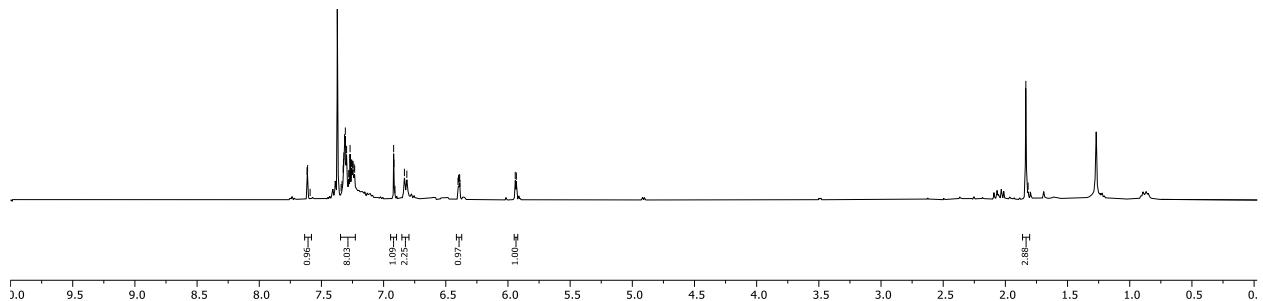



5-(4-Chlorophenyl)-2-methyl-1,2-diphenyl-1,2-dihydro-3H-pyrrole-3-thione (3b)

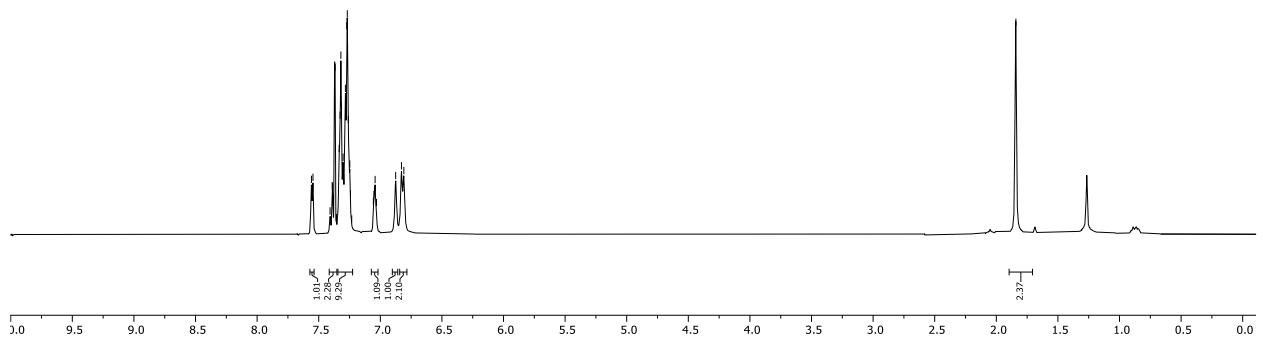
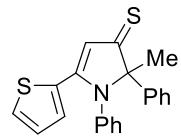
NMR_1H


7.45
7.44
7.42
7.38
7.38
7.35
7.35
7.33
7.33
7.22
7.22
7.20
7.18
7.18
7.16
7.16
7.14
7.14
7.10
6.69
6.67
6.67
6.65
6.65

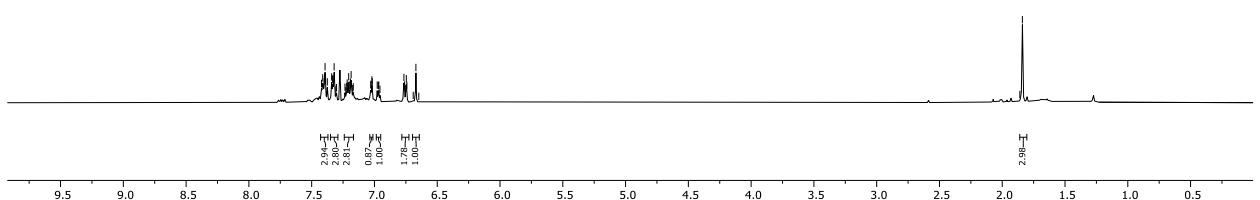
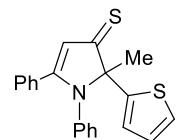
1.86
1.79


5-(4-Ethylphenyl)-2-methyl-1,2-diphenyl-1,2-dihydro-3H-pyrrole-3-thione (3c)

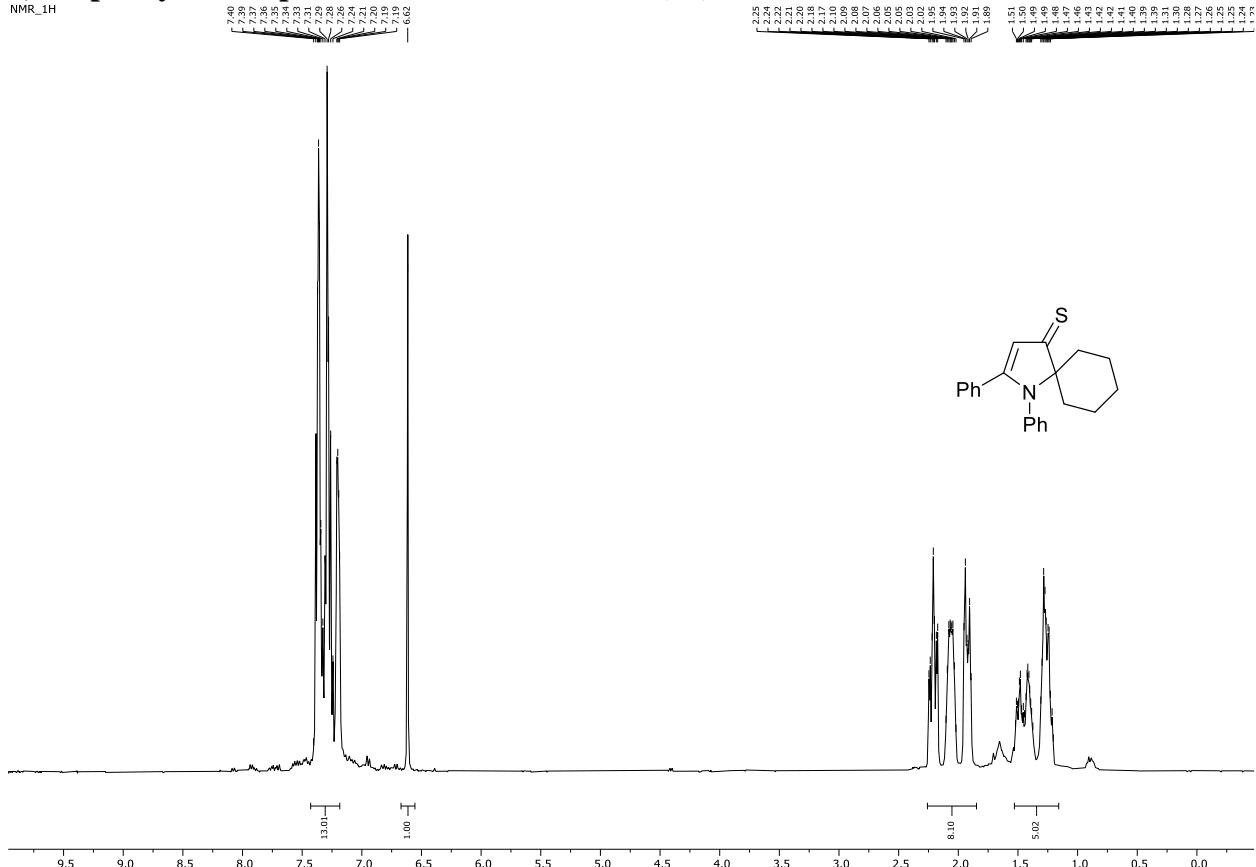
NMR_1H



5-(Furan-2-yl)-2-methyl-1,2-diphenyl-1,2-dihydro-3H-pyrrole-3-thione (3d)

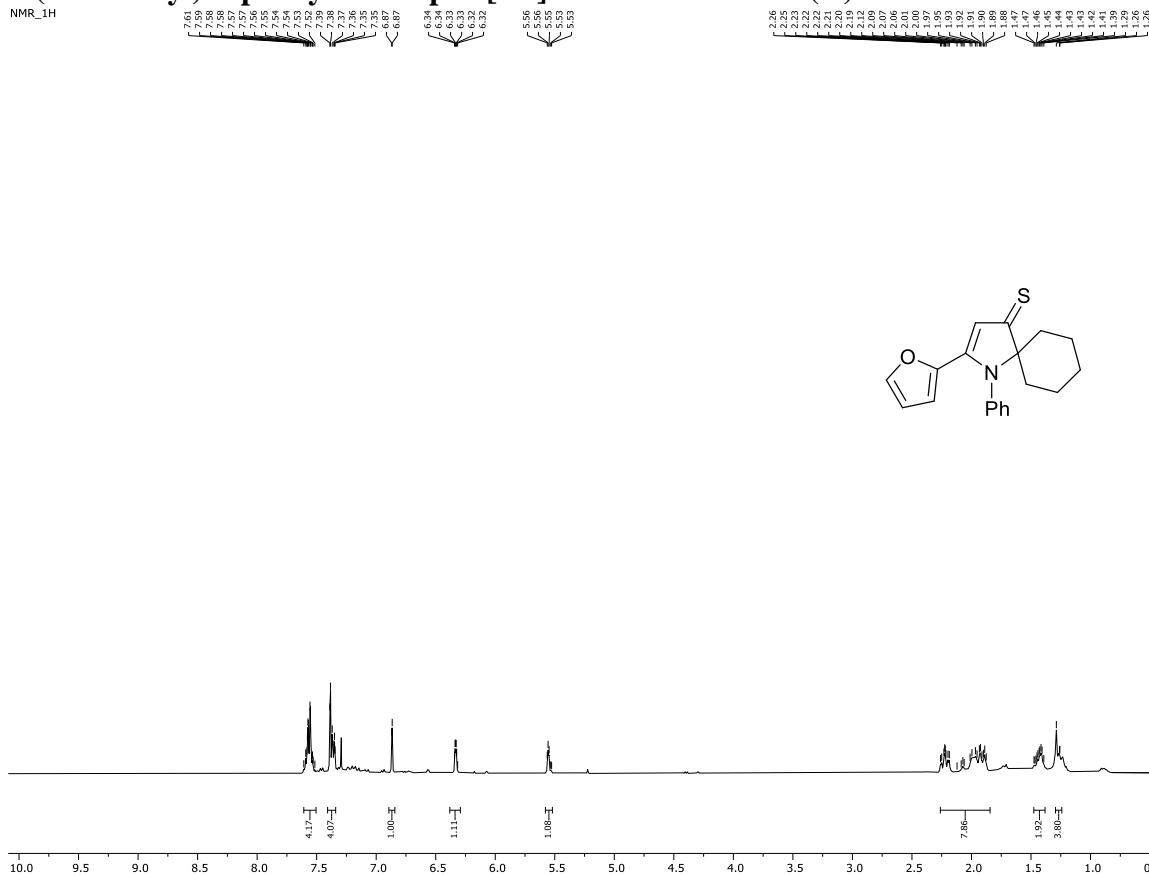
NMR_1H



2-Methyl-1,2-diphenyl-5-(thiophen-2-yl)-1,2-dihydro-3*H*-pyrrole-3-thione (3e)

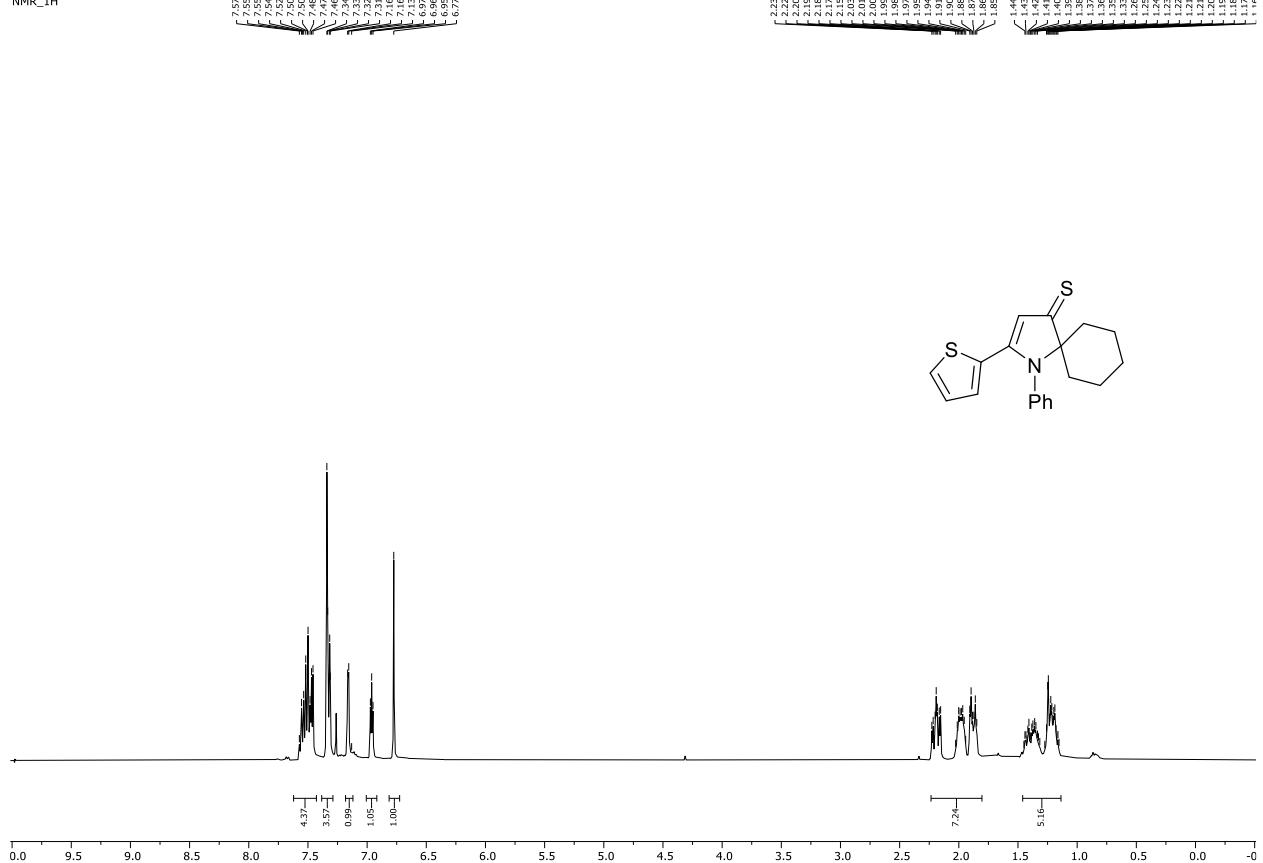
NMR 1H


2-Methyl-1,5-diphenyl-2-(thiophen-2-yl)-1,2-dihydro-3H-pyrrole-3-thione (3g)

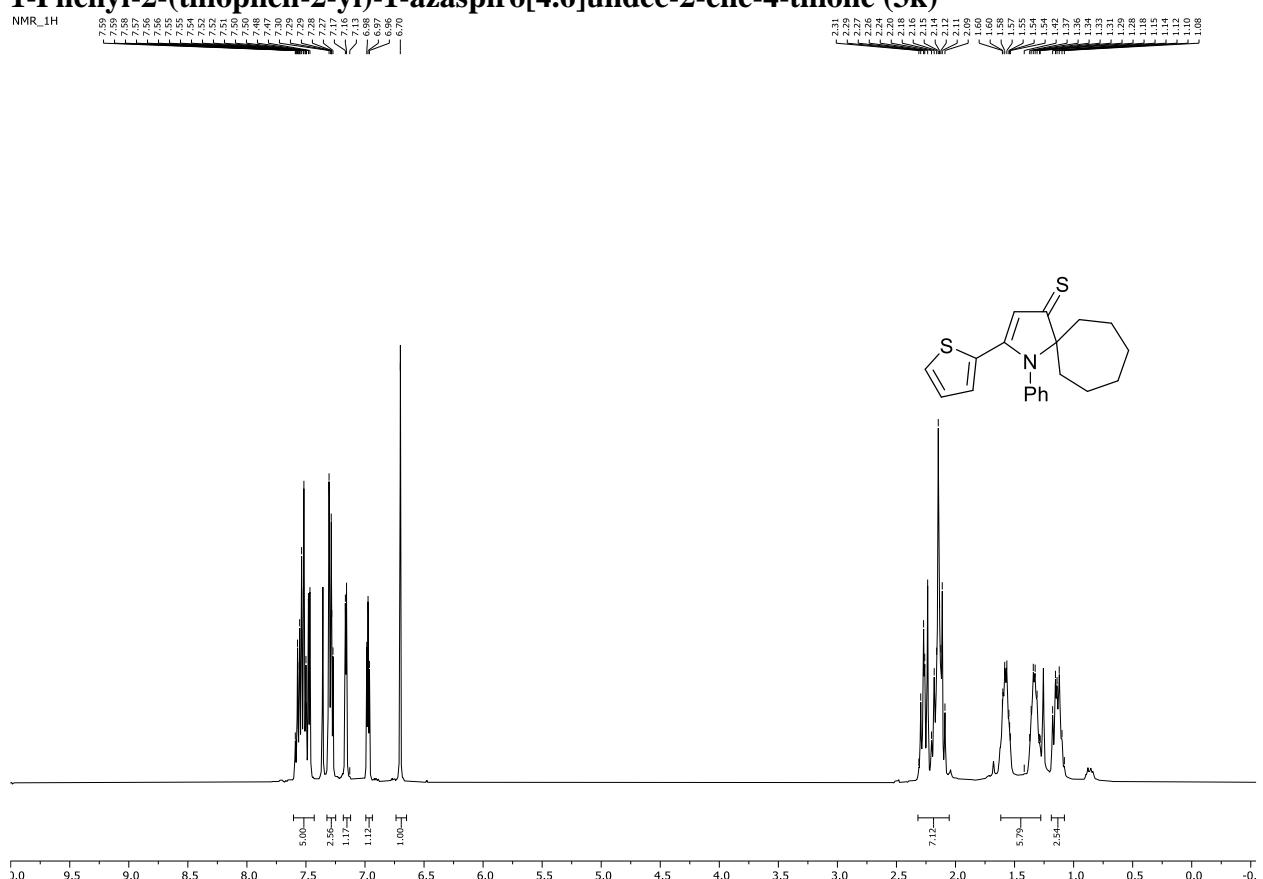
NMR 1H


1,2-Diphenyl-1-azaspiro[4.5]dec-2-ene-4-thione (3h)

1,
NMR 1H


2-(Furan-2-yl)-1-phenyl-1-azaspiro[4.5]dec-2-ene-4-thione (3i)

NMB 1H


1-Phenyl-2-(thiophen-2-yl)-1-azaspiro[4.5]dec-2-ene-4-thione (3j)

NMR_1H

1-Phenyl-2-(thiophen-2-yl)-1-azaspiro[4.6]undec-2-ene-4-thione (3k)

NMR_1H

