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The reactions of secondary phosphine chalcogenides with 
acetylenes, including electron-deficient ones (alkyl propiolates,1,2 
acetylenedicarboxylates,3–5 acetylenic ketones,6–10 cyano
acetylenes11,12) are in the focus of modern research.11–18 Usually, 
the main products of such reactions are the corresponding mono- 
or diadducts of secondary phosphine chalcogenides to the triple 
bond, i.e., tertiary ethenyl phosphine or bisphosphine 
chalcogenides.3,4,6,7,11,12 These compounds are employed as 
precursors of biologically active substances,13,14 ligands for the 
design of metal complexes,15–17 extractants of rare earth 
metals18–20 and multifaceted building blocks in organic 
synthesis.21–24 Meanwhile, the reactions of secondary phosphine 
sulfides with electron-deficient acetylenic ketones, particularly 
those with additional functionality,25 remain understudied.6,7 
These reactions can produce adducts both at the triple bond6,7 
and carbonyl group.26

Recently, the reaction of secondary diphenylphosphine oxide 
with a novel family of functionalized acetylenic ketones, namely, 
g-amino ,-ynones, was investigated. The latter became readily 
available from propargylic amines, adducts of acetylene gas to 
Schiff bases.27 These propargylic amines are readily cross-
coupled with (hetero)aromatic acyl chlorides in the presence of 
the catalytic system PdCl2/CuI/Ph3P/Et3N to afford g-amino 
ynones.28 The thus obtained amino ynones 1 reacted regio-, 
stereo- and chemoselectively with Ph2P(O)H (no catalyst, 
toluene, 100–105 °C) to give Z-3-diphenylphosphoryl-1,4-
diorganyl-4-(organylamino)alk-2-en-1-ones in yields up to 75% 
(Scheme 1, upper line).29 However, when attempted (in the 
origin of present work) to extend this reaction over secondary 
phosphine sulfides it turned out, that under similar conditions, 
the reaction of 1,4-diphenyl-4-(phenylamino)pent-2-yn-1-one 
1a with diphenylphosphine sulfide 2a took absolutely unexpected 
pathway. Instead of ordinary addition, the sulfur atom transfer to 
acetylenic ketone with simultaneous release of oxygen to give 
1,2-methyl-1,2,5-triphenyl-1,2-dihydro-3H-pyrrole-3-thione 3a 

was observed (yield 31%, see Scheme 1, lower line). 
Diphenylphosphine oxide was detected as the secondary reaction 
product (31P NMR). The awaited adducts of diphenylphosphine 
sulfide to the triple bond were fixed in the reaction mixture only 
in negligible amounts (~5–7%).

The aim of this work was to study the main features of the 
above sulfur/oxygen exchange/cyclization process during the 
reaction between g-amino ,-ynones 1 and secondary phosphine 
sulfides. To determine the basic preparative patterns of the sulfur/
oxygen exchange/cyclization found, we investigated the 
reactions between model 1,4-diphenyl-4-(phenylamino)pent-2-
yn-1-one 1a and diphenyl-, bis(2-phenylethyl)-, and tris(2-
phenylethyl)phosphine sulfides 2a–c (see Scheme 1). Bis(2-
phenylethyl)phosphine sulfide 2b was readily available via the 
reaction of styrene with PH3/H2O mixture generated from red 
phosphorus in superbase media30 followed by treatment with 
elemental sulfur. The reaction was monitored by 31P NMR 
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spectroscopy until complete conversion of the starting phosphine 
sulfide, as well as by IR spectroscopy following disappearance 
of the absorption band at ~2208 cm–1 for the CºC bond. In the 
reaction mixture, the corresponding phosphine oxide was also 
identified (31P NMR data).

Diorganylphosphine sulfides 2a,b reacted with amino ynone 
1a (toluene, 100–105 °C, 22 h) to afford 1,2-dihydro-3H-
pyrrole-3-thione 3a in 31 and 26% yields, respectively (Table 1, 
entries 1, 2). A little bit higher yield (32%) was achieved when 
the reaction 1a + 2b was carried out in acetonitrile at 80–85 °C 
for 60 h (entry 3). At lower temperature (50–55 °C), the yield of 
thione 3a considerably decreased (to 10%) despite a longer 
(80 h) heating (entry 5), while at room temperature no target 
thione 3a was detected (entry 4).

The highest yield of thione 3a (53%, see Table 1, entry 6) 
was observed under the following conditions: aqueous MeCN 
(5 equiv. of water per 1 equiv. of ketone 1a), 80–85 °C, 48 h. A 
slightly lower efficiency of the process (46% yield, entry 7) 
was achieved when the reaction was performed as two-phase 
process in the presence of 5 equiv. of water (without MeCN) 
for much shorter time (6 h). However, larger quantity of water 
(~222 equiv.) negatively affected the process when only traces 
of product 3a were detected (entry 8). The replacement of 
water by BunOH (100–105 °C) as a possible proton transfer 
agent entirely stopped the exchange/cyclization (entry 9). The 
major products of entries 8, 9 were oligomers of amino ynone 
1a (similar oligomers were also detected in cases with toluene, 
see entries 1, 2). Applying two-fold excess of phosphine 
sulfide 2b (MeCN, 5 equiv. of water, 80–85 °C, 40 h) (see 
entry 6) did not noticeably influence the process since it 
increased just slightly (from 53 to 57%) the yield of thione 3a, 
the conversion of the initial phosphine sulfide 2b being ~77% 
(31P NMR data).

Notably, with diphenylphosphine sulfide 2a under optimal 
conditions (5 equiv. H2O, MeCN, 80–85 °C, 24 h) pyrrole-3-
thione 3a was isolated in only 8% yield (see Table 1, entry 10). 
Such a considerable substituent effect is possibly associated with 
a decrease in nucleophilicity of thiophosphoryl sulfur caused by 
the electron-withdrawing phenyl groups. A steric shielding of 
the P=S group by ortho-hydrogen atoms of phenyl groups may 
also contribute to low reactivity of diphenylphosphine sulfide 2a. 
In the reaction mixture, there were detected (31P NMR) small 
amounts of thiophosphinic acid and its anhydride, the products 
of diphenylphosphine sulfide oxidation, along with trace 
dithiophosphinic acid resulted from disproportionation of 
diphenylphosphine sulfide 2a (cf. refs. 31, 32). These side 

reactions reduced efficiency of the sulfur/oxygen exchange that 
followed from the reduced yields of 1,2-dihydro-3H-pyrrole-3-
thiones 3. Apart from these minor side processes, the formation 
of the expected28 1,2-dihydro-3H-pyrrol-3-one and a monoadduct 
of phosphine sulfide 2a to the triple bond of the starting acetylene 
1a (10–12%) was observed in most of the experiments.

Noteworthy, tris(2-phenylethyl)phosphine sulfide 2c appeared 
to be inert in the reaction providing no target product even upon 
very long heating at 80–85 °C for 120 h (see Table 1, entry 11). 
This is in keeping with the above admission about the decrease 
of thiophosphoryl function reactivity due to steric effect of the 
adjusting phenylethyl groups. 

Next, we evaluated the scope of sulfur/oxygen exchange/
cyclization process (Scheme 2). The yields of 1,2-dihydro-3H-
pyrrole-3-thiones 3a–m strongly depend on the structure of 
amino ynones 1a–m ranging 5–53%, however no regularity on 
structure–yield relationship can be here deduced. It is only clear 
that bulky a-positioned naphthyl substituent at the triple bond 
almost completely stopped the formation of the target thione 3l. 
Also, when phenyl substituent was replaced by electron-donating 
cyclohexyl one in the acyl part of the ketone, the yield of the 
corresponding thione 3f sharply dropped (5%). A small yield 
(9%) of 3m was observed as well, when the accepting substituent 
(Cl) was introduced into the aniline part of ketone 1m. It should 
be noted that in cases of thiones 3f,l,m, large amount (25–28%) 
of corresponding oxo analogs, 1,2-dihydro-3H-pyrrol-3-ones, 
was formed.

Mechanistically (Scheme 3), the sulfur/oxygen exchange/
cyclization under question is likely initiated by nucleophilic 
attack of the thiophosphoryl sulfur at the triple bond to generate 
1,4-dipole intermediates A, which after quenching with water 
molecule produces phosphoranes B. The latter decompose to 
secondary phosphine oxide and ene thiols C, which would 
prototropically rearrange to thiones D further undergoing 
intramolecular cyclization to 5-hydroxypyrrole-3-thiones E, 
which are dehydrated to final 1,2-dihydro-3H-pyrrole-3-thiones 
3. Actually, the transformation of intermediate phosphorane B to 
ene thiol C can also proceed via six-membered transition state 
(see four-membered one shown in Scheme 3) with inclusion of 
an additional molecule of water.

Table  1  Conditions for the reaction between amino ynone 1a and 
secondary phosphine sulfides 2a–c.a

Entry
Phosphine 
sulfide

Solvent
H2O added
(equiv.)

T/°C t/h
Yield of 3a
(%)

  1 2a PhMe none 100–105   22 31
  2 2b PhMe none 100–105   22 26
  3 2b MeCN none   80–85   60 32
  4 2b MeCN none   20–25 120   0
  5 2b MeCN none   50–55   80 10
  6 2b MeCN 5   80–85   48 (40b) 53 (57b)
  7 2b none 5   80–85     6 46
  8 2b H2Oc ~222c   80–85   12 traces
  9 2b BunOH none 100–105   21   0
10 2a MeCN 5   80–85   24   8
11 2c MeCN 5   80–85 120   0
a Reagents and conditions: 1,4-diphenyl-4-(phenylamino)pent-2-yn-1-one 
1a (0.163 g, 0.5 mmol), phosphine sulfide 2a–c (0.5 mmol), solvent (2 ml), 
argon. b With 1a/2b ratio being 1 : 2, 31P NMR conversion of 2b was 77%. 
c Amount of water was 1 ml.
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Scheme  2  Reagents and conditions: i, amino ynone 1a–m (0.5 mmol), 
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As far as this reaction was carried out in the commercially 
grade solvents, traces of water contained in them might be 
enough to neutralize the carbanionic site of the intermediate A. 
The further reaction progress is due to the water resulted from 
the cyclization (the dehydration of intermediate E).

This reaction cascade corresponds roughly to the observed 
substituent effects. Indeed, the reaction is strongly hindered by 
the bulky substituents in the a-position of the triple bond, which 
is subjected to the initial attack of thiophosphoryl sulfur. Also, 
slow rate of the process was noticed for amino ynones having 
more electron-donating substituents in the acyl moiety that 
hampers the nucleophilic attack at the triple bond. Likewise, the 
electron-accepting substituents in the aniline part of the ketone 
retard its addition (cyclization) to the carbonyl group.

In conclusion, the extraordinary sulfur/oxygen exchange/
cyclization during the catalyst-free reaction (aq. MeCN, 
80–85 °C), between available g-amino ,-ynones and 
secondary phosphine sulfides, particularly bis(2-phenylethyl)-
phosphine sulfide, to provide 1,2-dihydro-3H-pyrrole-3-thiones 
has been disclosed. The reaction is assumed to start with the 
formation of 1,4-dipole intermediate generated by the attack of 
thione sulfur at the triple bond. The subsequent cascade 
transformations with participation of water molecules and 
elimination of phosphine oxides complete the process. The 
results contribute to better understanding the reactivity of both 
electron-deficient acetylenes and phosphine chalcogenides and 
offer an alternative approach to the synthesis of 1,2-dihydro-3H-
pyrrole-3-thiones, a family of prospective intermediates for 
pharmaceutical research.
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