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Mild cuprous halide mediated direct C2 monohalogenation of indoles
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Treatment of indoles with cuprous halide-N-fluorobenzene-
sulfonimide system in MeCN at room temperature affords
the corresponding C3-halogenated derivatives. Cuprous
halide acts as a dual-function reagent serving both as the
halogen source and the promoter.
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Halogenated indoles have attracted interest due to their
extensive applications in biology and medicine.'”” They are
also utilized as efficient motifs in pesticide® and general organic
synthesis.” Typically, halogen atoms are introduced onto the
indole ring through direct functionalization. Among all
strategies, the halogenation of indoles on the C? position has
garnered more interest due to its widespread applications in
medicinal chemistry. Molecular iodine,'%-!3 systems of sodium
halides with phenyliodine diacetate [PIDA, PhI(OAc),],!*!8
NCS/catalyst,'9-2 1,3-dichloro-5,5-dimethylhydantoin
(DXDMH), Buy,NX (under electrosynthesis conditions),26-3!
and copper(Il) bromide or chloride? have been employed as
halogen sources and catalysts (Scheme 1). However, some of
the reported procedures required the use of solvents with high
boiling point or special catalysts, and the substrate scope was

limited.
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Application of cuprous halides as cost-effective and readily
available metal catalysts have garnered significant attention,
rendering them crucial sources of halogens.?? Herein, we propose
a novel approach to the direct monohalogenation of the C—H
bond at the C3 position of the indole scaffold, employing cuprous
halides as both the halogen sources and promoter, while utilizing
N-fluorobenzenesulfonimide (PhSO,),NF (NFSI) as an oxidant.
It is noteworthy that (i) our operations are conducted at room
temperature and (i) cuprous halides, functioning as inorganic
salts, play dual roles as halogen sources and promoters. This
strategic approach showcases exceptional regioselectivity by
employing cost-effective halogen sources with high reactivity,
while also applying to a broad range of substrates with
straightforward execution.

Initially, we optimized the reaction conditions with indole 1a
(1.0 mmol) and cuprous chloride (1.0 mmol) as the model
reactants (see Scheme 1) at room temperature in acetonitrile as
the solvent. A range of oxidants was screened including PIDA
and phenyliodine bis(trifluoroacetate) (PIFA), with NFSI having
been identified as the most favorable choice (Table 1, entries
1-5). Solvents such as 1,4-dioxane, THF, deionized water,
dichloromethane, and DMF (entries 6-10) were evaluated;
however, these provided lower yields of product 2a compared to
acetonitrile. When amounts of NFSI and cuprous chloride were
raised to 1.1 equiv., the substrate 1a was completely transformed
into the desired product (entry 11). The impact of reaction
temperature on chlorination was further investigated. Conducting
the reaction at reflux resulted in decreased yields due to impurity
formation, while lower temperatures (0—5 °C) caused incomplete
conversion of substrate 1a to 2a. Additionally, our study showed
that chlorination could be completed within 1 h (see entry 11).
Finally, with extending the chlorination protocol to bromination
(CuBr) and iodination (Cul) the corresponding products 2'a and
2''a were obtained (entries 12, 13).

Based on the optimized reaction conditions, a series of indole
derivatives were synthesized under these refined parameters
(Scheme 2)." This approach exhibited excellent tolerance
towards various substituted indole compounds 1b-i.
Halogenation of N-methyl-substituted indole 1b resulted in C3-

~ 214 -


https://scifinder-n.cas.org/navigate/?answerSetKey=null&appId=85a232e2-fd72-4405-b781-3c86cf48dc64&backKey=64697e005f113a15a4af096c&clearSearch=true&contentUri=document%2Fpt%2Fdocument%2F52318846&isFromRetrosynthesis=false&metricsOrdinal=5&metricsSourceUri=document%2Fpt%2Fdocument%2F52318846&resultType=reference&resultView=detail&state=searchDetail.reference&suppressNavigation=true&uiContext=366&uiSubContext=551&uriForDetails=document%2Fpt%2Fdocument%2F52318846&uriList=document%2Fpt%2Fdocument%2F52318846
mailto:Peter_he2009@126.com;lwcczu@126.com

Mendeleev Commun., 2025, 35, 214-216

Table 1 Optimization of CuX-mediated halogenation of indole 1a at C(3)
position.”

Entry Oxidant  Solvent CuX Product  Yield of 2a (%)"
1 PIDA MeCN CuCl 2a 35
2 H,0, MeCN CuCl 2a 55
3 K>,S,05  MeCN CuCl 2a 20
4 PIFA MeCN CuCl 2a 30
5 NFSI MeCN CuCl 2a 85
6 NFSI Dioxane CuCl 2a 70
7 NFSI THF CuCl 2a 30
8 NFSI H,O CuCl 2a trace
9 NFSI CH,Cl, CuCl 2a 25
10 NFSI DMF CuCl 2a 30
11 NFSI MeCN CuCl 2a 95¢ (88,4 45,¢ 96/)
12 NFSI MeCN CuBr 2'a 82
13 NFSI MeCN Cul 2"a 82

4 Reaction conditions: 1a (1.0 mmol), CuX (1.0 mmol, 1.0 equiv.), oxidant
(1.0 mmol, 1.0 equiv.), solvent (5 ml), room temperature, 12 h. *Isolated
yield. ¢CuCl (1.1 equiv.), NFSI (1.1 equiv.). 4Under reflux. ¢ At 0 °C.
fReaction time was 6 h. ¢Reaction time was 1 h.

halogenated N-methyl indoles 2b, 2'b and 2''b with yields
ranging from 94 to 96% (for particular values, see Online
Supplementary Materials). Analogous N-Boc derivative 1c¢ was
transformed into products 2¢/2'¢/2"'c in somewhat lower yields,
so the reaction time had to be increased to 5 h. Indole substrates
1d—g bearing nitro substituents on the phenyl ring underwent
smooth halogenation within 5 h achieving good to excellent
yields of the corresponding halogeno derivatives. The
introduction of an electron-donating group, such as 5-methoxy,
at the 5 position yielded satisfactory yields (2h, 2'h and 2''h)
within 1 h. Additionally, 2-methylindole 1i was converted into
the desired products 2i/2'i/2""i with yields ranging from 76 to
87%.

To gain deeper insights into the reaction mechanism, a series
of control experiments were subsequently conducted. Initially, to
verify the role of copper(I) salt in the halogenation reaction,
cuprous chloride was replaced with sodium chloride. In this
case, no conversion of indole 1a substrate into the target product
2a was detected through TLC analysis, indicating that cuprous
salt truly promoted the reaction. Subsequently, upon addition of
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Scheme 2 Reagents and conditions: i, 1a—i (1.0 mmol), CuX (1.1 mmol,
1.1 equiv.), NFSI (1.1 mmol, 1.1 equiv.), MeCN (5 ml), room temperature,
1 h (or 5 h for substrates 1c—g).

T General procedure for the synthesis of 2. To a 25 ml flask equipped
with a magnetic stirring bar and condenser tube, indole derivatives 1
(1.0 mmol), cuprous halide (1.1 mmol), N-fluorobenzenesulfonimide
(1.1 mmol), and acetonitrile (5 ml) were added under air atmosphere. The
reaction mixture was stirred at room temperature for 1-5 h, and then the
mixture was filtered through a plug of celite, the filtrate was concentrated
in a vacuum and purified by chromatography (light petroleum/EtOAc) as
an eluent to give products 2.
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Scheme 3 Proposed mechanism.
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5.0 equiv. of 2,2,6,6-tetramethylpiperidine N-oxide (TEMPO)
into the reaction system, no suppression effect was observed and
product 2a was formed in 82% yield, thus suggesting that the
reaction did not proceed via a radical pathway.

Based on the control experiments and the relative literature,?
a plausible mechanism was proposed (Scheme 3). Initially,
cuprous halide is oxidized with NFSI to form a copper(1ll)
complex.’* Subsequently, this complex reacts with indole
substrate 1 to generate an intermediate halogen cation A,
simultaneously, bis(phenylsulfonyl)imidocopper(ll) fluoride is
produced. The intermediate product A subsequently transforms
into a more stable cationic species B.>> After eliminating a
proton, it yields 3-halo indole 2, bis(phenylsulfonamide), and
cuprous fluoride. The latter is unstable and decomposes into
cupric fluoride and copper metal.

In summary, we have developed a cuprous-mediated synthesis
for 3-halogenated indoles from indole derivatives under mild
conditions. In this reaction, cuprous halide acts not only as the
source of the halogenated reagent but also as the promoter, with
NFSI serving as an effective oxidant. Most indole substrates
displayed excellent reactivity and regioselectivity. The process is
straightforward and amenable to scale-up. Further mechanistic
studies and bi-functionalization based on this method are in
progress in our laboratory.
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Supplementary data associated with this article can be found
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