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Halogenated indoles have attracted interest due to their 
extensive applications in biology and medicine.1–7 They are 
also utilized as efficient motifs in pesticide8 and general organic 
synthesis.9 Typically, halogen atoms are introduced onto the 
indole ring through direct functionalization. Among all 
strategies, the halogenation of indoles on the C3 position has 
garnered more interest due to its widespread applications in 
medicinal chemistry. Molecular iodine,10–13 systems of sodium 
halides with phenyliodine diacetate [PIDA, PhI(OAc)2],14–18 
NCS/catalyst,19–25 1,3-dichloro-5,5-dimethylhydantoin 
(DXDMH), Bu4NX (under electrosynthesis conditions),26–31 
and copper(ii) bromide or chloride32 have been employed as 
halogen sources and catalysts (Scheme 1). However, some of 
the reported procedures required the use of solvents with high 
boiling point or special catalysts, and the substrate scope was 
limited. 

Application of cuprous halides as cost-effective and readily 
available metal catalysts have garnered significant attention, 
rendering them crucial sources of halogens.33 Herein, we propose 
a novel approach to the direct monohalogenation of the C–H 
bond at the C3 position of the indole scaffold, employing cuprous 
halides as both the halogen sources and promoter, while utilizing 
N-fluorobenzenesulfonimide (PhSO2)2NF (NFSI) as an oxidant. 
It is noteworthy that (i) our operations are conducted at room 
temperature and (ii) cuprous halides, functioning as inorganic 
salts, play dual roles as halogen sources and promoters. This 
strategic approach showcases exceptional regioselectivity by 
employing cost-effective halogen sources with high reactivity, 
while also applying to a broad range of substrates with 
straightforward execution.

Initially, we optimized the reaction conditions with indole 1a 
(1.0 mmol) and cuprous chloride (1.0 mmol) as the model 
reactants (see Scheme 1) at room temperature in acetonitrile as 
the solvent. A range of oxidants was screened including PIDA 
and phenyliodine bis(trifluoroacetate) (PIFA), with NFSI having 
been identified as the most favorable choice (Table 1, entries 
1–5). Solvents such as 1,4-dioxane, THF, deionized water, 
dichloromethane, and DMF (entries 6–10) were evaluated; 
however, these provided lower yields of product 2a compared to 
acetonitrile. When amounts of NFSI and cuprous chloride were 
raised to 1.1 equiv., the substrate 1a was completely transformed 
into the desired product (entry 11). The impact of reaction 
temperature on chlorination was further investigated. Conducting 
the reaction at reflux resulted in decreased yields due to impurity 
formation, while lower temperatures (0–5 °C) caused incomplete 
conversion of substrate 1a to 2a. Additionally, our study showed 
that chlorination could be completed within 1 h (see entry 11). 
Finally, with extending the chlorination protocol to bromination 
(CuBr) and iodination (CuI) the corresponding products 2'a and 
2''a were obtained (entries 12, 13).

Based on the optimized reaction conditions, a series of indole 
derivatives were synthesized under these refined parameters 
(Scheme 2).† This approach exhibited excellent tolerance 
towards various substituted indole compounds 1b–i. 
Halogenation of N-methyl-substituted indole 1b resulted in C3-
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halogenated N-methyl indoles 2b, 2'b and 2''b with yields 
ranging from 94 to 96% (for particular values, see Online 
Supplementary Materials). Analogous N-Boc derivative 1c was 
transformed into products 2c/2'c/2''c in somewhat lower yields, 
so the reaction time had to be increased to 5 h. Indole substrates 
1d–g bearing nitro substituents on the phenyl ring underwent 
smooth halogenation within 5 h achieving good to excellent 
yields of the corresponding halogeno derivatives. The 
introduction of an electron-donating group, such as 5-methoxy, 
at the 5 position yielded satisfactory yields (2h, 2'h and 2''h) 
within 1 h. Additionally, 2-methylindole 1i was converted into 
the desired products 2i/2'i/2''i with yields ranging from 76 to 
87%.

To gain deeper insights into the reaction mechanism, a series 
of control experiments were subsequently conducted. Initially, to 
verify the role of copper(i) salt in the halogenation reaction, 
cuprous chloride was replaced with sodium chloride. In this 
case, no conversion of indole 1a substrate into the target product 
2a was detected through TLC analysis, indicating that cuprous 
salt truly promoted the reaction. Subsequently, upon addition of 

5.0 equiv. of 2,2,6,6-tetramethylpiperidine N-oxide (TEMPO) 
into the reaction system, no suppression effect was observed and 
product 2a was formed in 82% yield, thus suggesting that the 
reaction did not proceed via a radical pathway. 

Based on the control experiments and the relative literature,29 
a plausible mechanism was proposed (Scheme 3). Initially, 
cuprous halide is oxidized with NFSI to form a copper(iii) 
complex.34 Subsequently, this complex reacts with indole 
substrate 1 to generate an intermediate halogen cation A, 
simultaneously, bis(phenylsulfonyl)imidocopper(ii) fluoride is 
produced. The intermediate product A subsequently transforms 
into a more stable cationic species B.35 After eliminating a 
proton, it yields 3-halo indole 2, bis(phenylsulfonamide), and 
cuprous fluoride. The latter is unstable and decomposes into 
cupric fluoride and copper metal.

In summary, we have developed a cuprous-mediated synthesis 
for 3-halogenated indoles from indole derivatives under mild 
conditions. In this reaction, cuprous halide acts not only as the 
source of the halogenated reagent but also as the promoter, with 
NFSI serving as an effective oxidant. Most indole substrates 
displayed excellent reactivity and regioselectivity. The process is 
straightforward and amenable to scale-up. Further mechanistic 
studies and bi-functionalization based on this method are in 
progress in our laboratory.

This project was financially supported by the Research Fund 
of Changzhou Vocational Institute of Engineering.
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in the online version at doi: 10.71267/mencom.7609.
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