

Synthesis of MXene/TiO₂ heterostructures for enhanced photocatalytic CO₂ reduction under visible light

Anna Yu. Kurenkova, Danila B. Vasilchenko, Andrey A. Saraev, Roman F. Alekseev, Egor E. Aydakov, Denis D. Mishchenko, Evgeny Yu. Gerasimov and Ekaterina A. Kozlova

Synthesis

Ti₂C₃X MXene ink preparation

The Ti₂C₃ MXene ink were prepared from the Ti₃AlC₂ MAX phase by the etching with LiF/HCl mixture. Specifically, 2.00 g of LiF were dissolved in $4 \cdot 10^{-5}$ m³ of 7.0 M hydrochloric acid and 2.00 g of Ti₃AlC₂ powder was added in several portions with a constant stirring. The resulting mixture was heated at 45°C for $1.728 \cdot 10^5$ s under constant stirring in polyethylene flask covered with a cap allowing gaseous product to evolve. The resulting suspension was centrifuged and the obtained precipitate was washed several times by centrifugation with water ($4 \cdot 10^{-4}$ m³ totally) to bring the pH value of the supernatant to about 6-7. The washed precipitate was redispersed in $5 \cdot 10^{-5}$ m³ of water and resulting suspension was ultrasonicated for 1 h in an ice bath. The as-obtained suspension was centrifuged at 4000 rpm for 300 s and the supernatant was collected and designated as Ti₂C₃ ink. The Ti₂C₃ phase deposited from ink by consecutive deposition-evaporation steps was characterized by PXRD. The UV-Vis spectrum was collected for ink after dilution 20 times by water. The weight percentage of Ti₂C₃ particles in prepared ink (3.7 kg/m³) was determined gravimetrically after evaporating of weighted portion of ink.

Ti₂C₃X/TiO₂ catalysts preparation

For preparation of 0.5 and 5 wt% of Ti₂C₃X/TiO₂ P25 samples, 425 mg of TiO₂ (Evonik P25) was suspended in $7 \cdot 10^{-6}$ m³ of water and under constant stirring $6.1 \cdot 10^{-7}$ or $6.1 \cdot 10^{-6}$ m³ of the Ti₂C₃ ink was added. The resulting suspension was stirred for 24 h at room temperature and then the solid material was separated by filtration on 0.22 µm PTFE porous membrane. The completeness of the deposition was checked by absence of the characteristic absorption band at 800 nm in the UV-Vis spectrum of the supernatant. The collected solid material was washed with water, acetone and dried in an air stream. Finally, the prepared material was dried at 60°C in a vacuum and designated as 0.5 and 5 wt% Ti₂C₃/TiO₂.

Characterization

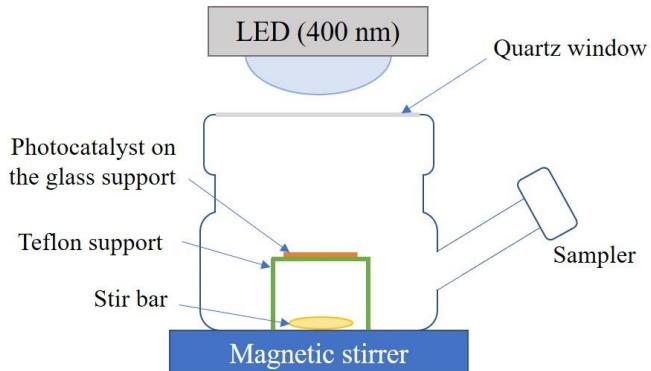
The photocatalysts that were prepared underwent characterization using X-ray diffraction (XRD), high-resolution transmission electron microscopy (HR TEM), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy and N₂ low temperature adsorption technique.

XRD patterns were obtained using a Bruker D8 Advance diffractometer (Cu K α Ni-filtered radiation, $\lambda = 1.5418$ Å), which was equipped with a Lynxeye linear detector (Bruker AXS GmbH, Germany). Rietveld refinement was performed for each XRD pattern using GSAS-II software packages.

XPS was performed using an X-ray photoelectron spectrometer (SPECS Surface Nano Analysis GmbH, Germany) equipped with an XR-50 X-ray source with a dual Al/Mg anode and a PHOIBOS-150 hemispherical electron energy analyzer. Core-level spectra were recorded with Al K α radiation ($h\nu = 1486.6$ eV). The binding energy calibration was performed by setting C1s peak corresponded to titanium carbide at 281.9 eV. Curve fitting was performed with CasaXPS software.¹

HR TEM images were obtained with a Themis electron microscope (Thermo Fisher Scientific, USA), which operates at a 200 kV accelerating voltage. The microscope boasts a spherical aberration corrector affording a maximum lattice resolution of 0.06 nm and a SuperX energy-dispersive spectrometer (Thermo Fisher Scientific). Ceta 16 CCD sensor (Thermo Fisher Scientific) was employed to capture images.

The diffuse reflectance **UV-vis spectra** were obtained using a Shimadzu UV-2501 PC spectrophotometer with an ISR-240A diffuse reflectance unit. The UV-Vis spectra were recalculated in the Kubelka-Munk coordinates as follows:


$$F(R) = (1-R/100)^{1/2}/(2R/100),$$

where R is the reflectance (%). The optical band gap (E_g) for the synthesized photocatalysts was estimated using the Tauc model for indirect allowed transitions by plotting $(F(R) \times h\nu)^{1/2}$ versus $h\nu$ followed by a linear extrapolation to intercept the energy axis.

The textural properties of the samples were measured by **low temperature N₂ adsorption** using an Autosorb-6B instrument (Quantachrome, the United States). The specific surface area was calculated by the Brunauer-Emmett-Teller method.

Photocatalytic tests

The CO₂ reduction reaction was carried out in the batch reactor ($1.7 \cdot 10^{-4}$ m³) with quartz window (Fig. S1). The details of the setup for testing the photocatalysts activity are described elsewhere.² Ultrapure water ("NuZar Q" water system set) was used for photocatalyst deposition on the glass support and to generate saturated vapor pressure in the reactor. The LED with maximum intensity at 400 nm and power density of 600 W m^{-2} was used as the light source. The gas sample was analyzed with a gas chromatograph "GH-1000" (Chromos, Russia) equipped with NaX and capillary columns; the flame ionization detector and thermal conductivity detector to identify the products of CO₂ reduction and H₂, respectively. Argon was used as carrier gas. Kinetic experiments were carried out for $1.8 \cdot 10^4$ s (5 h) with hourly gas sampling.

Figure S1. The set-up for photocatalytic CO₂ reduction.

Table S1. Detailed results of XRD analysis for MAX-phase (Ti₃AlC₂) and synthesized MXene (Ti₃C₂).

Phase	Lattice parameters, Å	Weight fraction, %	Crystalline size, nm	d (002), Å
MAX-phase (Ti₃AlC₂)				
Ti ₃ AlC ₂ (1) (sp. gr. P6 ₃ /mmc)	$a = 3.0781(2)$ $c = 18.597(1)$	67(1)	75(2)	9.30(1)
Ti ₃ AlC ₂ (2) (sp. gr. P6 ₃ /mmc)	$a = 3.0586(4)$ $c = 18.5988(5)$	12(1)	370(23)	-
α -Al ₂ O ₃ (sp. gr. R-3ch)	$a = 4.7584(8)$ $c = 12.990(2)$	6(1)	168(20)	-
Al ₃ Ti	$a = 3.853(1)$ $c = 8.605(3)$	15(1)	26(2)	-
MXene (Ti₃C₂)				
Ti ₃ C ₂	-	77(4)	7(1)	9.9(1)
α -Al ₂ O ₃ (sp. gr. R-3ch)	$a = 4.7588(8)$ $c = 12.989(2)$	5(2)	155(40)	-
TiC _{1-δ} X _{δ} (sp. gr. Fm-3m)	$a = 4.317(2)$	18(2)	20(5)	-

Table S2. Textural properties of TiO_2 and $\text{Ti}_3\text{C}_2/\text{TiO}_2$ photocatalysts. S_{BET} - specific surface area, V – pore volume.

Photocatalyst	S_{BET} , m^2/g	V , cm^3/g
TiO_2 P25	54	0.20
0.5% $\text{Ti}_3\text{C}_2/\text{TiO}_2$	49	0.41
5% $\text{Ti}_3\text{C}_2/\text{TiO}_2$	47	0.42

Table S3. EDX element analysis of Ti_3C_2 (area from Figure 1d).

Z	Element	Atomic %
6	C	36(5)
22	Ti	33(6)
9	F	17(4)
8	O	13(3)
13	Al	< 1

Table S4. Photocatalytic activities of MXene- and TiO_2 -based photocatalysts in gas-phase CO_2 reduction.

Nº	Photocatalyst	Light source	Conditions	Product formation rate, $\mu\text{mol g}^{-1} \text{h}^{-1}$	v_e , $\mu\text{mol g}^{-1} \text{h}^{-1}$	Ref.
1	1D g- C_3N_4 /2D $\text{Ti}_3\text{C}_2\text{T}_x$	300 W Xe-lamp	$\text{NaHCO}_3 + \text{H}_2\text{SO}_4$	CO , 0.73 CH_4 , 1.4	13	S3
2	2D/2D/0D $\text{TiO}_2/\text{C}_3\text{N}_4/\text{Ti}_3\text{C}_2$	350 W Xe-lamp	$\text{NaHCO}_3 + \text{H}_2\text{SO}_4$	CO , 4.39 CH_4 , 1.20	18.4	S4
3	$\text{Ti}_3\text{C}_2/\text{g-}\text{C}_3\text{N}_4/\text{ZnO}$	300 W Xe-lamp	CO_2 (0.02 MPa) + H_2O	CO , 6.41 CH_4 , 0.26	14.9	S5
4	g- $\text{C}_3\text{N}_4/\text{Ti}_3\text{C}_2\text{T}_x$	300 W Xe-lamp	$\text{CO}_2 + \text{H}_2\text{O}$	CO , 3.98 CH_4 , 2.12	24.9	S6
5	2D/2D Ti_3C_2 MXene/g- C_3N_4	300 W Xe-lamp, > 420 nm	$\text{NaHCO}_3 + \text{H}_2\text{SO}_4$	CO , 5.19 CH_4 , 0.044	10.7	S7
6	g- $\text{C}_3\text{N}_4/\text{Ti}_3\text{C}_2\text{T}_x/\text{TiO}_2$	300 W Xe-lamp	$\text{CO}_2 + \text{H}_2\text{O}$	CO , 8.65 CH_4 , 1.23	27.1	S8
7	$\text{ZnIn}_2\text{S}_4 @ \text{TiO}_2/\text{Ti}_3\text{C}_2$	150 W Xe-lamp	$\text{CO}_2 + \text{H}_2\text{O}$	CO , 7.5 CH_4 , 2.9	38.2	S9
8	Pt/ TiO_2 P25	400-nm LED	$\text{CO}_2 + \text{H}_2\text{O}$	CO , 0.08 CH_4 , 1.4	11.6	2
9	$\text{Ti}_3\text{C}_2/\text{TiO}_2$ P25	400-nm LED	$\text{CO}_2 + \text{H}_2\text{O}$	CO , 0.87 CH_4 , 2.24	19.7	This study

References

- S1. N. Fairley, V. Fernandez, M. Richard-Plouet, C. Guillot-Deudon, J. Walton, E. Smith, D. Flahaut, M. Greiner, M. Biesieger, S. Tougaard, D. Morgan and J. Baltrusaitis, *Appl. Surf. Sci. Adv.*, 2021, **5**, 100112; <https://doi.org/10.1016/j.apsadv.2021.100112>.
- S2. A. A. Saraev, A. Yu. Kurenkova, E. Yu. Gerasimov and E. A. Kozlova, *Nanomaterials*, 2022, **12**, 1584; [https://doi.org/10.3390/nano12091584/S1](https://doi.org/10.3390/nano12091584).
- S3. R. Zhong, Y. Liang, F. Huang, S. Liang and S. Liu, *Chin. J. Catal.*, 2023, **53**, 109; [https://doi.org/10.1016/S1872-2067\(23\)64513-9](https://doi.org/10.1016/S1872-2067(23)64513-9).
- S4. F. He, B. Zhu, B. Cheng, J. Yu, W. Ho and W. Macyk, *Appl. Catal. B*, 2020, **272**, 119006; <https://doi.org/10.1016/j.apcatb.2020.119006>.
- S5. J. Li, Y. Wang, Y. Wang, Y. Guo, S. Zhang, H. Song, X. Li, Q. Gao, W. Shang, S. Hu, H. Zheng and X. Li, *Nano Mater. Sci.*, 2023, **5**, 237; <https://doi.org/10.1016/j.nanoms.2023.02.003>.
- S6. X. Li, Y. Bai, X. Shi, J. Huang, K. Zhang, R. Wang and L. Ye, *Appl. Surf. Sci.*, 2021, **546**, 149111; <https://doi.org/10.1016/j.apsusc.2021.149111>.
- S7. C. Yang, Q. Tan, Q. Li, J. Zhou, J. Fan, B. Li, J. Sun and K. Lv, *Appl. Catal. B*, 2020, **268**, 118738; <https://doi.org/10.1016/j.apcatb.2020.118738>.
- S8. Y. Yang, D. Zhang, J. Fan, Y. Liao and Q. Xiang, *Sol. RRL*, 2021, **5**, 2000351; <https://doi.org/10.1002/solr.202000351>.
- S9. K. C. Devarayapalli, B. Kim, A. R. Manchuri, Y. Lim, G. Kim and D. S. Lee, *Appl. Surf. Sci.*, 2023, **636**, 157865; <https://doi.org/10.1016/j.apsusc.2023.157865>.