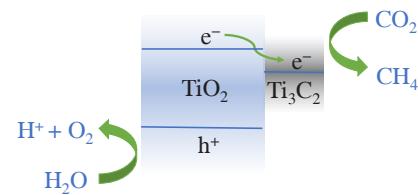


Synthesis of MXene/TiO₂ heterostructures for enhanced photocatalytic CO₂ reduction under visible light

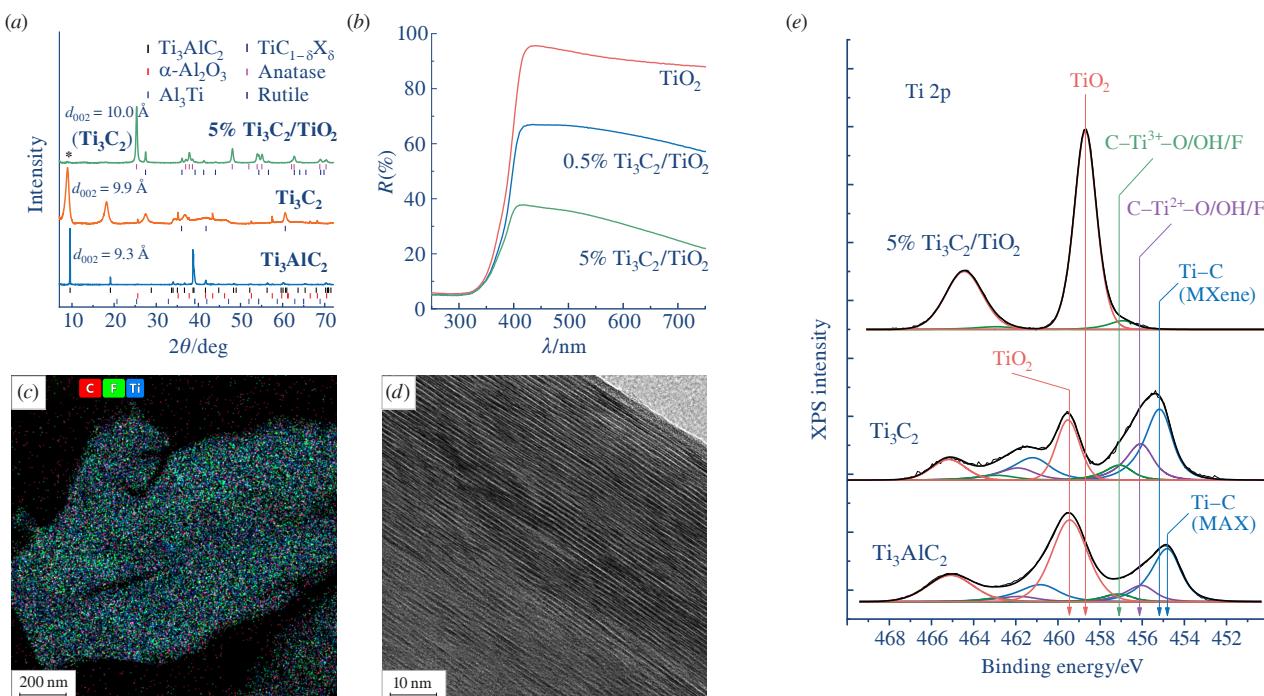
Anna Yu. Kurenkova,^a Danila B. Vasilchenko,^{a,b} Andrey A. Saraev,^{a,c} Roman F. Alekseev,^a Egor E. Aydakov,^a Denis D. Mishchenko,^{a,c} Evgeny Yu. Gerasimov^a and Ekaterina A. Kozlova^{*a}


^a G. K. Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russian Federation. E-mail: kozlova@catalysis.ru

^b A. V. Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russian Federation

^c Synchrotron Radiation Facility 'SKIF', Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, 630559 Kol'tsovo, Novosibirsk Region, Russian Federation

DOI: 10.71267/mencom.7588

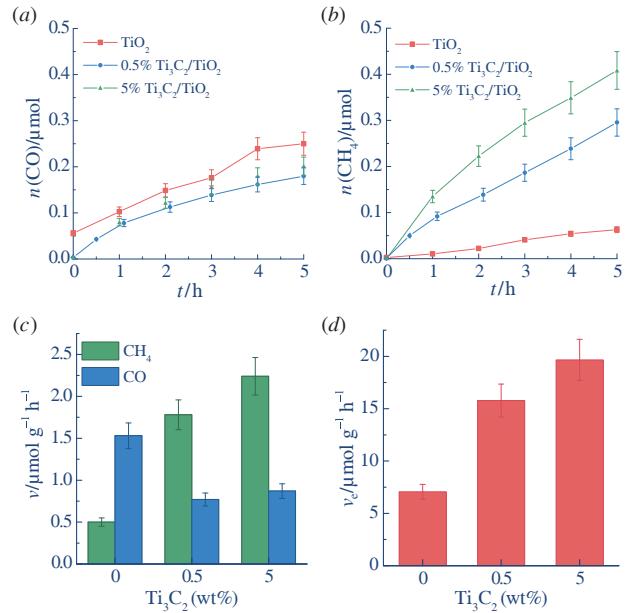

The modification of TiO₂-based photocatalysts with 5 wt% Ti₃C₂ (MXene) enhanced the reaction rate of CO₂ reduction by a factor of 2.8. The MXene Ti₃C₂ is an effective cocatalyst for CO₂ reduction to CH₄ under visible light irradiation (400 nm).

Keywords: photocatalysis, photocatalysts, MXenes, titanium carbide, Ti₃C₂, titanium dioxide, TiO₂, photocatalytic CO₂ reduction.

The current trend towards carbon footprint reduction and growing energy consumption requires the creation of new or modernization of existing energy production systems. This concept includes, among other things, development of renewable energy sources, reduction of greenhouse gas emissions, and improvement of energy efficiency.^{1,2} The reduction of CO₂ with the formation of CH₄, CO, CH₃OH, HCHO, HCOOH, C₂H₅OH, etc., is of great interest not only for obtaining solar fuel and intermediates for the chemical industry but also for reducing the greenhouse effect.^{3–5}

The main factor restraining the practical use of photocatalytic conversion of CO₂ is the lack of efficient heterogeneous photocatalysts functioning under the action of sunlight.⁶ This is largely due to the weak absorption of irradiation in the visible region by photocatalysts and recombination of photogenerated charge carriers.⁷ The creation of composite materials based on a stable and safe material, titanium dioxide (TiO₂), widely used as a photocatalyst, can solve the above problems.⁸ Promising cocatalysts that improve the activity of bulk TiO₂ are various

Figure 1 (a) XRD patterns of Ti₃AlC₂, Ti₃C₂, and 5% Ti₃C₂/TiO₂; (b) diffuse reflectance spectra of TiO₂, 0.5% Ti₃C₂/TiO₂, and 5% Ti₃C₂/TiO₂; (c) EDX mapping and (d) HRTEM image of Ti₃C₂; and (e) Ti 2p core-level spectra of Ti₃AlC₂, Ti₃C₂, and 5% Ti₃C₂/TiO₂.


2D layered materials such as MoS_2 ,⁹ $\text{g-C}_3\text{N}_4$,¹⁰ h-BN,¹¹ borophene,¹² and black phosphorous.¹³ These 2D materials attract enormous attention due to their unique electronic and catalytic properties.⁶ MXenes, a new type of 2D transition metal carbides (M_{n+1}C_n , $n = 1, 2$, or 3), attracted much attention since the synthesis of 2D Ti_3C_2 in 2011.^{14,15} Ti_3C_2 MXenes have great prospects for use in photocatalysis due to their large specific surface area, high electrical conductivity, narrow band gap, and the possibility of surface functionalization by the introduction of terminal groups ($-\text{OH}$, $-\text{F}$, etc.).³ Recently, $\text{Ti}_3\text{C}_2/\text{TiO}_2$ composites have been synthesized for photocatalytic carbon dioxide reduction,² hydrogen production,¹⁶ and nitrogen photofixation.¹⁷

We synthesized 0.5–5 wt% $\text{Ti}_3\text{C}_2/\text{TiO}_2$ photocatalysts based on robust commercial TiO_2 Evonik P25 (anatase/rutile) for photocatalytic CO_2 reduction under visible light and determined the effect of MXene loading on the overall rate of carbon dioxide reduction and on selectivity for methane and carbon monoxide.

The synthesis of Ti_3C_2 MXenes was performed by classical etching of MAX phase Ti_3AlC_2 in an aqueous solution of LiF/HCl . The deposition of Ti_3C_2 on the surface of P25 was carried out in a water suspension of MXene Ti_3C_2 and TiO_2 . The synthesized samples and starting TiO_2 P25 were characterized by XRD analysis, UV-Vis spectroscopy, HRTEM with EDX analysis, and XPS (see Online Supplementary Materials for details). Figure 1 represents XRD patterns and UV-Vis and XPS spectra of a precursor MAX phase (Ti_3AlC_2), MXene (Ti_3C_2), and a 5% $\text{Ti}_3\text{C}_2/\text{TiO}_2$ sample. According to XRD analysis, the precursor sample contained two MAX phases: (1) Ti_3AlC_2 with structural parameters close to published data¹⁸ and (2) Ti_3AlC_2 , which had a predominant orientation along the (002), (004), and (008) planes and an increased crystalline size; $\alpha\text{-Al}_2\text{O}_3$ and Al_3Ti impurities were also found (Table S1). The XRD patterns of Ti_3C_2 are typical for MXenes.¹⁶ The MXene lattice was strongly distorted compared to that of the MAX phase, but the shift of the first peak corresponded to the (002) diffraction plane to lower angles could be attributed to the removal of Al from the MAX phase.² Another evidence of the formation of MXene was the presence of a so-called hk-band (unresolved diffraction band) in the region of $2\theta \approx 33.6\text{--}49.4^\circ$. The impurity Al_2O_3 phase remained unchanged after MXene formation, whereas the Al_3Ti phase disappeared (Table S1). For the composite 5 wt% $\text{Ti}_3\text{C}_2/\text{TiO}_2$ sample, observed peaks of anatase and rutile corresponded to TiO_2 P25;¹⁵ a low intensity peak at 10.1° corresponded to the interplanar distance (002) of Ti_3C_2 MXene. The deposition of MXenes also changed the textural properties of the photocatalyst. In composite photocatalysts, the specific surface area decreased compared to the TiO_2 P25, but the pore volume increased (Table S2). The UV-Vis spectra of TiO_2 P25 and 0.5–5 wt% $\text{Ti}_3\text{C}_2/\text{TiO}_2$ samples are presented in Figure 1(b); the band gap energy (E_g) was calculated using a Tauc plot for indirect allowed transition (Table 1). The absorption in the visible range increased with the Ti_3C_2 content from 0.5 to 5 wt%, whereas the band gap energy slightly decreased from 3.01 eV for pristine P25 to 2.87 eV for 5 wt% $\text{Ti}_3\text{C}_2/\text{TiO}_2$. The TEM images of MXene (Ti_3C_2) confirmed uniform distribution of Ti, C, and F on the surface of MXene [Figure 1(c)]; EDX analysis (Table S3) showed the predominant content of titanium and carbon, and the

Table 1 Properties and activity of 0.5 and 5 wt% $\text{Ti}_3\text{C}_2/\text{TiO}_2$ photocatalysts and commercial TiO_2 P25 in carbon dioxide reduction. Conditions: 101 kPa CO_2 with saturated water vapor, $m(\text{cat}) = 30$ mg, 400-nm LED irradiation.

Entry	Sample	E_g/eV	$v/\mu\text{mol g}^{-1} \text{h}^{-1}$			$v_e(\text{CO}_2)/\mu\text{mol g}^{-1} \text{h}^{-1}$
			CH_4	CO	H_2	
1	TiO_2	3.01	0.50	1.53	0.13	7.08
2	0.5% $\text{Ti}_3\text{C}_2/\text{TiO}_2$	2.96	1.78	0.77	1.20	15.8
3	5% $\text{Ti}_3\text{C}_2/\text{TiO}_2$	2.87	2.24	0.87	2.13	19.7

Figure 2 Kinetic curves of (a) CO and (b) CH_4 production over photocatalysts; (c) the rate of product formation, and (d) total electron consumption during CO_2 reduction.

atomic ratio F/Ti was approximately 1/2, which suggested the formation of $\text{Ti}_3\text{C}_2\text{F}_x$ ($x \sim 1.5$). Concentrations of Al impurities did not exceed 1 at%. The HRTEM image [Figure 1(d)] showed a layered structure of the synthesized MXene, which is typical for this class of materials.^{6,15,19} The Ti 2p core-level spectrum of MAX phase [Figure 1(e)] was fitted by three $\text{Ti} 2p_{3/2}$ – $\text{Ti} 2p_{1/2}$ doublets with of $\text{Ti} 2p_{3/2}$ binding energy peaks at 454.8, 456.1, and 457.1, and 459.5 eV corresponded to $\text{Ti}-\text{C}$, $\text{C}-\text{Ti}^{2+}$, and $\text{C}-\text{Ti}^{3+}$ with O/OH terminal groups, the fourth peak corresponded to a TiO_2 impurity.^{20–22} The increased $\text{Ti} 2p_{3/2}$ – $\text{Ti} 2p_{1/2}$ doublet binding energy corresponded to a TiO_2 impurity due to a charge effect of low-conductive phase; moreover, it is likely that TiO_2 was an amorphous phase, which could not be detected by XRD. The Ti 2p core-level spectrum of synthesized MXene was fitted by the same components, but the $\text{Ti} 2p_{3/2}$ binding energy of 455.2 eV corresponded to $\text{Ti}-\text{C}$ to confirm the formation of MXene.^{20–22} Note that etching of a MAX phase in an aqueous solution of LiF/HCl could result in formation of terminal $-\text{F}$ groups. The Ti 2p core-level spectrum of 5% $\text{Ti}_3\text{C}_2/\text{TiO}_2$ was fitted by two $\text{Ti} 2p_{3/2}$ – $\text{Ti} 2p_{1/2}$ doublets with $\text{Ti} 2p_{3/2}$ binding energy peaks at 457.0 and 458.7 eV due to $\text{C}-\text{Ti}^{3+}$ – F of MXene and Ti^{4+} of TiO_2 P25, respectively.

The photocatalytic gas-phase CO_2 reduction with H_2O was carried out in a batch reactor under irradiation with a 400-nm LED; the reaction setup (Figure S1) was described elsewhere.²³ CO, CH_4 , and H_2 were identified as the main reaction products (Table 1). Figure 2 shows the kinetic curves of CO and CH_4 formation, respectively. The total rate of electrons consumed for photocatalytic CO_2 reduction (Table 1) was calculated according to the equation

$$v_e(\text{CO}_2) = 8v(\text{CH}_4) + 2v(\text{CO}), \quad (1)$$

where $v(\text{CH}_4)$ and $v(\text{CO})$ are the rates of CH_4 and CO formation ($\mu\text{mol g}^{-1} \text{h}^{-1}$).^{18,19} Figures 2(c), (d) and Table 1 show the rates of product formation and the overall CO_2 reduction rate. The conversion of CO_2 under exposure to visible light ($\lambda = 400$ nm) was observed on TiO_2 P25 and 0.5–5 wt% $\text{Ti}_3\text{C}_2/\text{TiO}_2$ P25. However, the main reduction product was CO in the case of unmodified TiO_2 , while CH_4 became the predominant product in the case of 0.5% $\text{Ti}_3\text{C}_2/\text{TiO}_2$ P25 and 5% $\text{Ti}_3\text{C}_2/\text{TiO}_2$ P25 photocatalysts. Methane is an important product of CO_2 conversion under irradiation with solar light because solar energy

can be stored in synthetic natural gas to be used as an energy carrier. Earlier, we observed a similar pattern when moving from TiO_2 to photocatalysts with deposited noble metals like Pt/TiO_2 , Ag/TiO_2 , and $\text{CuO}_x/\text{TiO}_2$.^{18,19,24} Obviously, the formation of CH_4 rather than CO is thermodynamically more favorable; however, the formation of methane is a complex eight-electron process. For this process to proceed effectively, accumulation of electron density near the surface of metal nanoparticles is required.^{18,19} Thus, we can assume that, when Ti_3C_2 MXenes were deposited on the surface of titania, the same effect was observed as when TiO_2 was doped with metals due to unique properties of MXenes, such as high metal conductivity and the ability to accumulate high electron density.¹⁴ The metallic properties of supported MXenes were indirectly manifested in a large increase in the rate of hydrogen production (see Table 1). Previously, it was found that the deposition of MXene on the surface of TiO_2 or other semiconductors increased the selectivity for methane,^{3,18} and this was also confirmed by quantum chemical calculations.²⁵

It should be noted that the overall rate of CO_2 reduction increased with the addition of MXene to TiO_2 to reach $19.7 \mu\text{mol g}^{-1} \text{h}^{-1}$ as the weight fraction was increased from 0.5 to 5%. A comparison with recently published data on CO_2 reduction over MXene-containing photocatalysts (Table S4) showed that the activity of the 0.5–5 wt% $\text{Ti}_3\text{C}_2/\text{TiO}_2$ photocatalysts was at the same level or higher than the activity of similar systems. A higher activity was obtained when high-power xenon lamps without light filters were used as an irradiation source. Moreover, the activity of TiO_2 modified with Ti_3C_2 MXene exceeded the activity of platinized TiO_2 in photocatalytic CO_2 reduction in similar conditions.²³

Thus, we proposed active 0.5–5 wt% $\text{Ti}_3\text{C}_2/\text{TiO}_2$ photocatalysts for CO_2 reduction under visible light with predominant methane formation. The deposition of MXenes on a titania surface had a similar effect to that of the deposition of metal cocatalysts. Note that the composites based on Ti_3C_2 MXenes and commercially available TiO_2 Evonik P25 were prepared for the first time for the CO_2 reduction process using simple synthetic approaches.

This work was supported by the Russian Science Foundation (grant no. 24-13-00416).

Online Supplementary Materials

Supplementary data associated with this article can be found in the online version at doi: 10.71267/mencom.7588.

References

- 1 R. F. Alekseev, A. A. Saraev, A. Yu. Kurenkova and E. A. Kozlova, *Russ. Chem. Rev.*, 2024, **93**, 5124; <https://doi.org/10.59761/RCR5124>.
- 2 S. G. Zlotin, K. S. Egorova, V. P. Ananikov, A. A. Akulov, M. V. Varaksin, O. N. Chupakhin, V. N. Charushin, K. P. Bryliakov, A. D. Averin, I. P. Beletskaya, E. L. Dolengovski, Y. H. Budnikova, O. G. Sinyashin, Z. N. Gafurov, A. O. Kantukov, D. G. Yakhvarov, A. V. Aksenen, M. N. Elinson, V. G. Nenajdenko, A. M. Chibiryakov, N. S. Nesterov, E. A. Kozlova, O. N. Martyanov, I. A. Balova, V. N. Sorokoumov, D. A. Guk, E. K. Beloglazkina, D. A. Lemenovskii, I. Y. Chukicheva, L. L. Frolova, E. S. Izmest'ev, I. A. Dvornikova, A. V. Popov, A. V. Kutchin, D. M. Borisova, A. A. Kalinina, A. M. Muzafarov, I. V. Kuchurov, A. L. Maximov and A. V. Zolotukhina, *Russ. Chem. Rev.*, 2023, **92**, 5104; <https://doi.org/10.59761/RCR5104>.
- 3 Y. Zheng, Z. Li, Q. Li, E. Liu, D. Liu, Y. Liang, B. Han, J. Qi, G. Wei and L. Zhu, *Sep. Purif. Technol.*, 2024, **347**, 127591; <https://doi.org/10.1016/j.seppur.2024.127591>.
- 4 K. C. Devarayapalli, B. Kim, A. R. Manchuri, Y. Lim, G. Kim and D. S. Lee, *Appl. Surf. Sci.*, 2023, **636**, 157865; <https://doi.org/10.1016/j.apsusc.2023.157865>.
- 5 V. N. Borshch, S. Ya. Zhuk, E. V. Pugacheva, T. D. Dipheko, D. E. Andreev, Yu. A. Agafonov and O. L. Eliseev, *Mendeleev Commun.*, 2023, **33**, 55; <https://doi.org/10.1016/j.mencom.2023.01.017>.
- 6 E. A. Kozlova, M. N. Lyulyukin, D. V. Kozlov and V. N. Parmon, *Russ. Chem. Rev.*, 2021, **90**, 1520; <https://doi.org/10.1070/RCR5004>.
- 7 H.-E. Nemamcha, N.-N. Vu, D. S. Tran, C. Boisvert, D. D. Nguyen and P. Nguyen-Tri, *Sci. Total Environ.*, 2024, **931**, 172816; <https://doi.org/10.1016/j.scitotenv.2024.172816>.
- 8 L. Biswal, R. Mohanty, S. Nayak and K. Parida, *J. Environ. Chem. Eng.*, 2022, **10**, 107211; <https://doi.org/10.1016/j.jece.2022.107211>.
- 9 G. Swain, S. Sultana and K. Parida, *ACS Sustainable Chem. Eng.*, 2020, **8**, 4848; <https://doi.org/10.1021/acssuschemeng.9b07821>.
- 10 A. V. Zhurenok, D. B. Vasilchenko and E. A. Kozlova, *Int. J. Mol. Sci.*, 2023, **24**, 346; <https://doi.org/10.3390/ijms24010346>.
- 11 L. Acharya, S. Nayak, S. P. Pattnaik, R. Acharya and K. Parida, *J. Colloid Interface Sci.*, 2020, **566**, 211; <https://doi.org/10.1016/j.jcis.2020.01.074>.
- 12 Z. Zhang, Y. Yang, E. S. Penev and B. I. Yakobson, *Adv. Funct. Mater.*, 2017, **27**, 1605059; <https://doi.org/10.1002/adfm.201605059>.
- 13 A. M. Kuchkaev, A. V. Zhurenok, A. M. Kuchkaev, A. V. Sukhov, V. S. Kashansky, M. M. Nikitin, K. A. Litvintseva, S. V. Cherepanova, E. Yu. Gerasimov, E. A. Kozlova, O. G. Sinyashin and D. G. Yakhvarov, *Kinet. Catal.*, 2024, **65**, 513; <https://doi.org/10.1134/S0023158424601979>.
- 14 M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi and M. W. Barsoum, *Adv. Mater.*, 2011, **23**, 4248; <https://doi.org/10.1002/adma.201102306>.
- 15 Z. Otgonbayar and W.-C. Oh, *Mol. Catal.*, 2023, **541**, 113085; <https://doi.org/10.1016/j.mcat.2023.113085>.
- 16 T. Su, Z. D. Hood, M. Naguib, L. Bai, S. Luo, C. M. Rouleau, I. N. Ivanov, H. Ji, Z. Qin and Z. Wu, *ACS Appl. Energy Mater.*, 2019, **2**, 4640; <https://doi.org/10.1021/acsaelm.8b02268>.
- 17 Y. Liao, J. Qian, G. Xie, Q. Han, W. Dang, Y. Wang, L. Lv, S. Zhao, L. Luo, W. Zhang, H. Y. Jiang and J. Tang, *Appl. Catal., B*, 2020, **273**, 119054; <https://doi.org/10.1016/j.apcatb.2020.119054>.
- 18 C. Ferrara, A. Gentile, S. Marchionna, I. Quinzeni, M. Fracchia, P. Ghigna, S. Pollastrini, C. Ritter, G. M. Vanacore and R. Ruffo, *Nano Lett.*, 2021, **21**, 8290; <https://doi.org/10.1021/acs.nanolett.1C02809>.
- 19 Y. Wu, J. Wu, C. Zhu, L. Zhang and J. Yan, *Chem. Eng. J.*, 2023, **465**, 142798; <https://doi.org/10.1016/j.cej.2023.142798>.
- 20 V. Natu, M. Benchakar, C. Canaff, A. Habrioux, S. Célérier and M. W. Barsoum, *Matter*, 2021, **4**, 1224; <https://doi.org/10.1016/j.jmatt.2021.01.015>.
- 21 L.-Å. Naslund, P. O. Å. Persson and J. Rosen, *J. Phys. Chem. C*, 2020, **124**, 27732; <https://doi.org/10.1021/acs.jpcc.0C07413>.
- 22 A. Tanvir, P. Sobolciak, A. Popelka, M. Mrlik, Z. Spitalsky, M. Micusik, J. Prokes and I. Krupa, *Polymers*, 2019, **11**, 1272; <https://doi.org/10.3390/polym11081272>.
- 23 A. A. Saraev, A. Yu. Kurenkova, E. Yu. Gerasimov and E. A. Kozlova, *Nanomaterials*, 2022, **12**, 1584; <https://doi.org/10.3390/nano12091584>.
- 24 M. N. Lyulyukin, A. Yu. Kurenkova, A. V. Buhktiyarov and E. A. Kozlova, *Mendeleev Commun.*, 2020, **30**, 192; <https://doi.org/10.1016/j.mencom.2020.03.021>.
- 25 Y. Xiao and W. Zhang, *Nanoscale*, 2020, **12**, 7660; <https://doi.org/10.1039/C9NR10598K>.

Received: 8th July 2024; Com. 24/7588