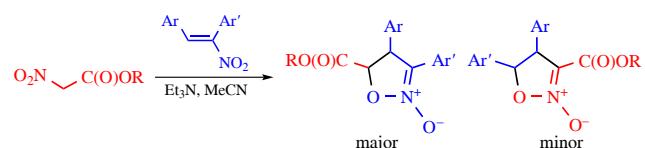


Synthesis of 3,4-diarylisoxazoline *N*-oxides from nitrostilbenes and nitroacetates

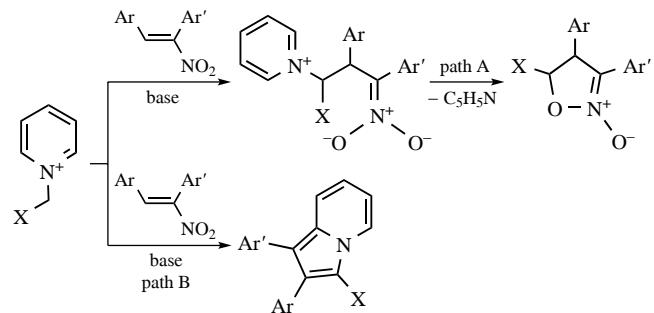

Nikita A. Kuznetsov,^{a,b} Olga A. Bogomolova,^b Ivan A. Koblov,^a Alexander V. Samet^{*a} and Victor V. Semenov^a

^a N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation. E-mail: sametav@ioc.ac.ru

^b D. I. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russian Federation

DOI: 10.71267/mencom.7584

A base-catalyzed reaction of nitrostilbenes with alkyl nitroacetates proceeds regioselectively to afford 3,4-diarylisoxazoline *N*-oxides as sole or major products. In some cases small amounts of 4,5-diarylisoxazoline *N*-oxides were formed as side products.

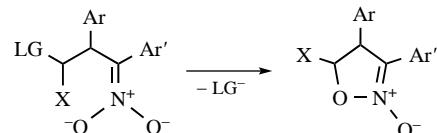


Keywords: nitrostilbenes, alkyl nitroacetates, 3,4-diarylisoxazoline *N*-oxides, 4,5-diarylisoxazoline *N*-oxides, pyridinium ylides.

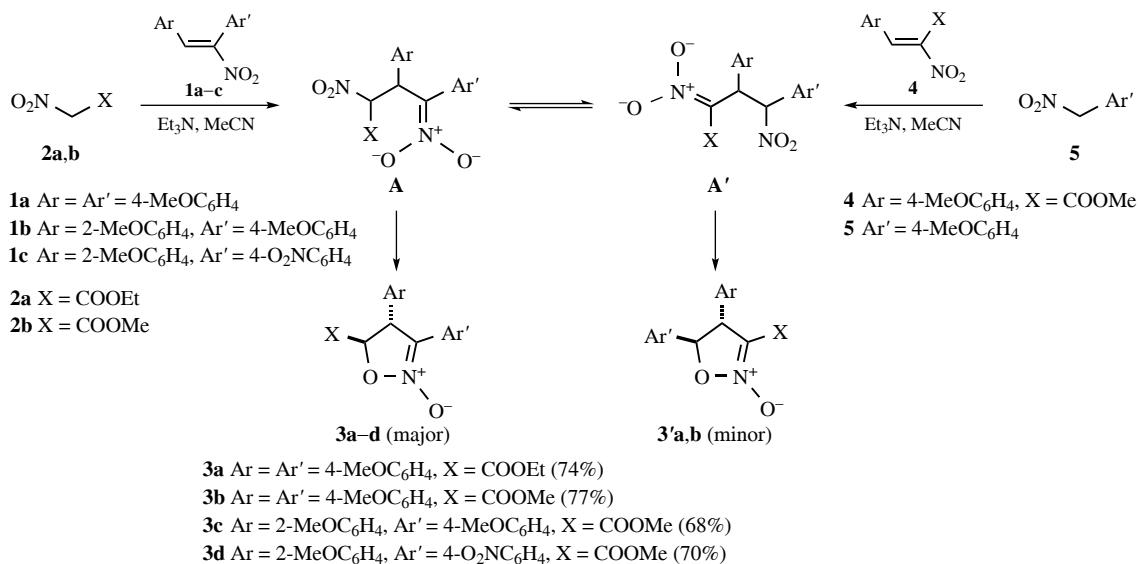
Previously a synthesis of 3,4-diarylisoxazoline *N*-oxides (precursors of 3,4-diarylisoxazoles – efficient tubulin inhibitors) from pyridinium ylides and nitrostilbenes was developed (Scheme 1, path A).^{1,2} Similar reaction was described for isoquinolinium ylide as well.³ Notably, modification of the reaction conditions may in principle afford 1,3-dipolar cycloaddition products (indolizines and pyrroloisoquinolines) rather than isoxazoline *N*-oxides^{3,4} (see Scheme 1, path B).

Obviously, the reaction proceeds *via* the initial Michael addition followed by elimination of the pyridine fragment due to nitronate-anion intramolecular attack.^{5–8} The second step of this reaction is a special case of isoxazoline *N*-oxide synthesis by the cyclization of nitro compounds containing a leaving group (LG) γ to the nitro substituent⁹ (Scheme 2). Our attention was drawn to a possibility of preparation of 3,4-diarylisoxazoline *N*-oxides by reacting nitrostilbenes with nitroacetates (X = COOR; in this case a nitro group rather than pyridine fragment should act as the leaving group LG).

Indeed, a reaction of nitrostilbene **1a** with ethyl nitroacetate **2a** afforded *trans*-5-ethoxycarbonyl-3,4-diarylisoxazoline *N*-oxide **3a** (Scheme 3) identical to that previously produced in the reaction of the same nitrostilbene with the corresponding pyridinium⁴ and isoquinolinium³ ylides. Similar isoxazoline *N*-oxide **3b** was formed from nitrostilbene **1a** and methyl nitroacetate **2b**. This is not a self-evident result: in theory, cyclization of the intermediate Michael adduct could yield regioisomeric 4,5-diarylisoxazoline *N*-oxide **3'** as


Scheme 1

well (*via* a nitronate **A'**, see Scheme 3). The cyclization outcome in such reactions was previously shown to be highly sensitive to the nature of the substituents in the adduct.^{10–13}


In fact, ¹H NMR of the crude **1a** + **2b** reaction mixture, besides the signals for **3b**, revealed also signals of a side product (~10%) assigned as **3'b** (this product was not isolated in pure form; similar impurity was observed in the **1a** + **2a** reaction as well). Two possible explanations for this selectivity of the reaction can be proposed. (1) Initially formed nitronate **A** undergoes cyclization to 3,4-diarylisoxazoline *N*-oxide **3a** *before* it isomerizes to the nitronate **A'**; (2) **A** → **A'** isomerization does take place, in the meantime more nucleophilic nitronate **A** undergoes cyclization more readily than nitronate **A'**.

A choice between these two options was made due to a control experiment (see Scheme 3) involving methyl α -nitrocinnamate **4**¹⁴ and arylnitromethane **5**. In this case an initially formed nitronate should possess the structure of type **A'**, so its cyclization should afford 4,5-diarylisoxazoline *N*-oxide **3'b**. However, this was not the case and again 3,4-diarylisoxazoline *N*-oxide **3b** was the major product while its regioisomer **3'b** was observed as a minor impurity (though in somewhat higher amount of ~14%). Thus, of the two abovementioned explanations the option (2) is preferable. ¹H NMR study of the **4** + **5** reaction mixture after column chromatography, besides characteristic signals of the major isomer **3b** (two doublets with *J* = 1.8 Hz at 4.77 and 4.99 ppm for the H⁴ and H⁵ protons), also revealed two doublets with *J* = 5.1 Hz at 4.60 (H⁴) and 5.41 ppm (H⁵) corresponding to the minor isomer **3'b** (these values perfectly fit the literature data¹⁵ for *trans*-4,5-diaryl-3-(alkoxycarbonyl)isoxazoline *N*-oxides).

Also, good yields were observed for the reactions of the nitro ester **2b** with nitrostilbenes **1b,c** affording isoxazoline *N*-oxides **3c,d**, respectively (in the latter case the above impurity

Scheme 2

Scheme 3

signals typical for **3'** were not observed even in the crude product). Thus, the reaction smoothly occurs both with donor and acceptor substituents in nitrostilbenes.

In general, the conditions and yields of isoxazoline *N*-oxides in the reactions of nitrostilbenes with nitro esters **2** are comparable with those in the previously described reactions of nitrostilbenes with pyridinium ylides.^{1,2} Noteworthy, nitro esters **2a,b** are commercially available, while the corresponding pyridinium salts need to be prepared in advance; if necessary, compounds **2a,b** can be easily prepared as well.¹⁶

This work was carried out with the financial support from the Russian Science Foundation (grant no. 24-23-00109).

Online Supplementary Materials

Supplementary data associated with this article (synthetic procedures, characterization data and copies of ¹³C and ¹H NMR spectra for compounds **1c** and **3a-d**) can be found in the online version at doi: 10.71267/mencom.7584.

References

- 1 A. S. Maksimenko, V. P. Kislyi, N. B. Chernysheva, Y. A. Strelenko, Y. V. Zubavichus, V. N. Khrustalev, M. N. Semenova and V. V. Semenov, *Eur. J. Org. Chem.*, 2019, 4260; <https://doi.org/10.1002/ejoc.201900643>.
- 2 E. A. Silyanova, V. I. Ushkarov, A. V. Samet, A. S. Maksimenko, I. A. Koblov, V. P. Kislyi, M. N. Semenova and V. V. Semenov, *Mendeleev Commun.*, 2022, **32**, 120; <https://doi.org/10.1016/j.mencom.2022.01.039>.
- 3 E. A. Silyanova, A. V. Samet and V. V. Semenov, *J. Org. Chem.*, 2022, **87**, 6444; <https://doi.org/10.1021/acs.joc.2c00312>.
- 4 D. A. Rusanov, S. M. Alfadul, E. Yu. Portnyagina, E. A. Silyanova, N. A. Kuznetsov, K. E. Podpovetny, A. V. Samet, V. V. Semenov and M. V. Babak, *ChemBioChem*, 2023, **24**, e202300161; <https://doi.org/10.1002/cbic.202300161>.
- 5 P. Yu. Ushakov, S. L. Ioffe and A. Yu. Sukhorukov, *Org. Chem. Front.*, 2022, **9**, 5358; <https://doi.org/10.1039/D2QO00698G>.
- 6 A. A. Tabolin, A. Yu. Sukhorukov, S. L. Ioffe and A. D. Dilman, *Synthesis*, 2017, **49**, 3255; <https://doi.org/10.1055/s-0036-1589063>.
- 7 J.-R. Chen, X.-Q. Hu, L.-Q. Lu and W.-J. Xiao, *Chem. Rev.*, 2015, **115**, 5301; <https://doi.org/10.1021/cr5006974>.
- 8 C. Zhu, Y. Ding and L.-W. Ye, *Org. Biomol. Chem.*, 2015, **13**, 2530; <https://doi.org/10.1039/C4OB02556C>.
- 9 S. L. Ioffe, in *Nitrile Oxides, Nitrones and Nitronates in Organic Synthesis*, ed. H. Feuer, Wiley, Hoboken, 2008, pp. 435–747; <https://doi.org/10.1002/9780470191552>.
- 10 F. De Sarlo and F. Machetti, *Org. Biomol. Chem.*, 2023, **21**, 7255; <https://doi.org/10.1039/D3OB00960B>.
- 11 K.-P. Chen, Y.-J. Chen and C.-P. Chuang, *Eur. J. Org. Chem.*, 2010, 5292; <https://doi.org/10.1002/ejoc.201000401>.
- 12 S. C. Sahoo and S. C. Pan, *Eur. J. Org. Chem.*, 2019, 1385; <https://doi.org/10.1002/ejoc.201801693>.
- 13 Y. Mukaijo, S. Yokoyama and N. Nishiwaki, *Molecules*, 2020, **25**, 2048; <https://doi.org/10.3390/molecules25092048>.
- 14 R. S. Fornicola, E. Oblinger and J. Montgomery, *J. Org. Chem.*, 1998, **63**, 3528; <https://doi.org/10.1021/jo980477h>.
- 15 P. Gong, J. Wang, W. B. Yao, X. S. Xie and J. W. Xie, *Adv. Synth. Catal.*, 2022, **364**, 1185; <https://doi.org/10.1002/adsc.202101474>.
- 16 V. P. Kislyi, A. L. Laikhter, B. I. Ugrak and V. V. Semenov, *Russ. Chem. Bull.*, 1994, **43**, 70; <https://doi.org/10.1007/BF00699138>.

Received: 5th August 2024; Com. 24/7584