

Synthesis and structure of trinuclear yttrium(III) dihydrido cluster stabilized by bulky amidinate ligand

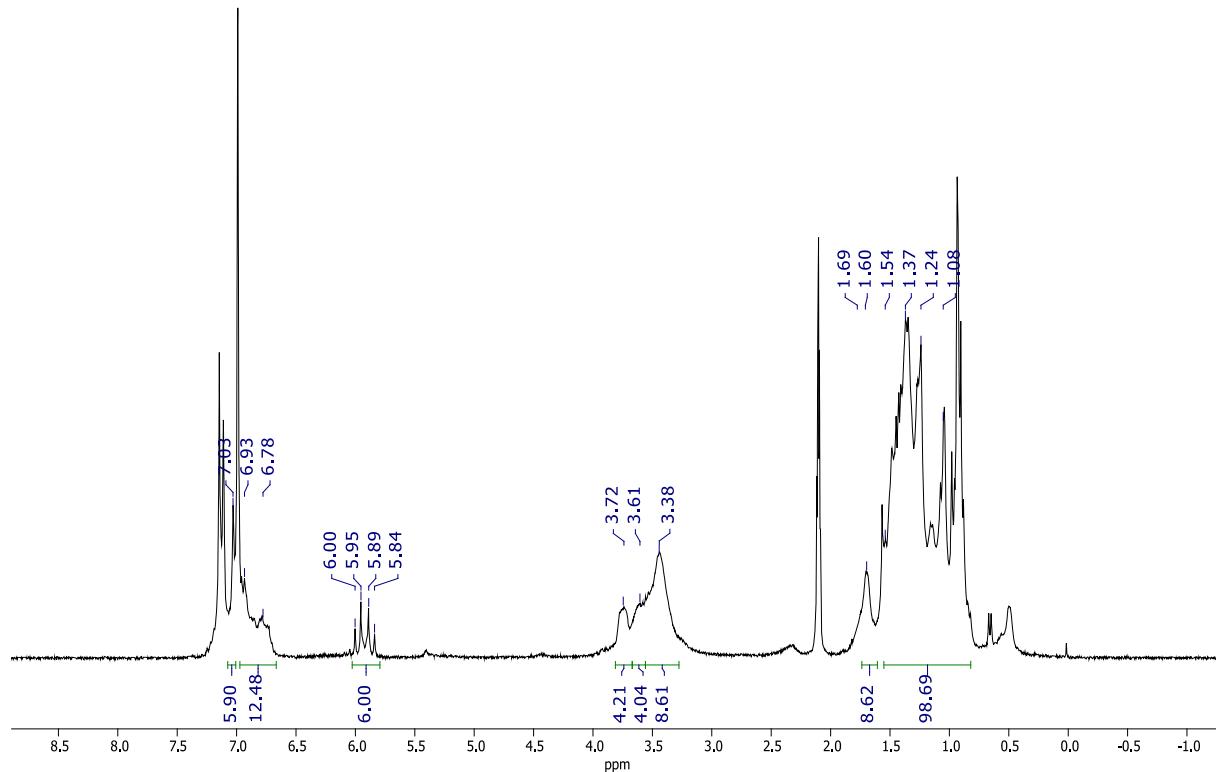
Dmitry M. Lyubov, Anton V. Cherkasov and Alexander A. Trifonov

Experimental section

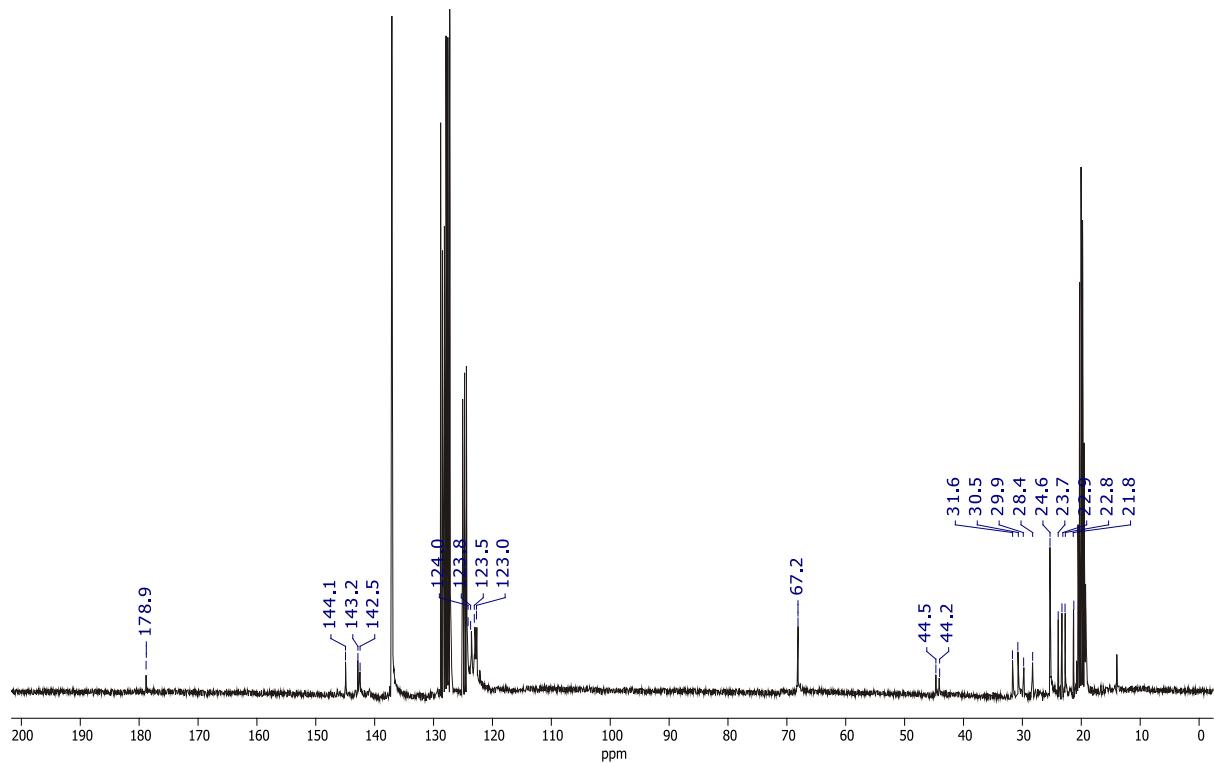
All operations were carried out under an argon atmosphere using Schlenk techniques or in nitrogen filled glovebox. THF and toluene were purified by distillation from sodium/benzophenone ketyl and degassed thoroughly. Hexane was dried by distillation from sodium/triglyme and benzophenone ketyl prior to use. Lanthanide metal analysis was carried out by complexonometric titration.^{S1} NMR spectra were recorded using a Bruker 300 MHz spectrometer. Chemical shifts for ¹H, ¹³C{¹H} in the NMR spectra were referenced internally to the residual solvent resonances and are reported relative to TMS. The C, H, N elemental analyses were performed in the microanalytical laboratory of the G. A. Razuvayev Institute of Organometallic Chemistry.

Characterization of (Amd^{tBu})Y(CH₂SiMe₃)₂(THF) (**1**) by single crystal

X-Ray analysis. Complex **1** was synthesized according to previously published procedure.^{S2} Single-crystal samples of **1** were obtained by slowly concentrating its solution in a THF/hexane mixture (1:5 v/v) at room temperature.


Synthesis of [(Amd^{tBu})Y(μ-H)₂]₃(THF)₂ (2**).** To a solution of **1** (0.490 g, 0.65 mmol) in a THF/hexane mixture (1:4, 15 mL) was added PhSiH₃ (0.165 g, 1.5 mol; 2.3 equiv.) at room temperature, and the reaction mixture was left at ambient temperature for 12 hours. The solvents were removed in vacuum, the solid residue was dried for 1 hour and then dissolved in a fresh portion of THF/hexane (1:4, 15 mL). Concentrating the resulting solution at room temperature led to the formation of colorless crystals of complex **2**. The mother liquor was decanted, the crystals were washed with hexane and dried in vacuum for 30 minutes. Complex **2** was isolated in 59% yield (0.235 g, 0.13 mmol). C₉₅H₁₅₁N₆O₂Y₃·2(C₆H₁₄) (1848.32 g/mol). Found

^{S1} S. J. Lyle and M. M. Rahman, *Talanta*, 1963, **10**, 1177; [https://doi.org/10.1016/0039-9140\(63\)80170-8](https://doi.org/10.1016/0039-9140(63)80170-8).


^{S2} A. V. Karpov, A. S. Shavyrin, A. V. Cherkasov, G. K. Fukin and A. A. Trifonov, *Organometallics*, 2012, **31**, 5349; <https://doi.org/10.1021/om300377h>.

(%): C, 69.18; H, 9.38; N, 4.80; Y, 14.92. Calculated (%): C, 69.53; H, 9.76; N, 4.55; Y, 14.43. ^1H NMR spectrum (300 MHz, toluene-d₈, 293 K) (δ , ppm): 1.08–1.60 (m, 99H, CH_3 tBu and iPr), 1.69 (br s, 8H, β - CH_2 THF), 3.38 (br s, 8H, α - CH_2 THF), 3.61 (m, 8H, CH iPr), 3.72 (m, 4H, CH iPr), 5.92 (quadr, $^1J_{\text{YH}} = 16.5$ Hz, 6H, Y–H), 6.74–7.08 (m, 18H, CH C₆H₃iPr₂). $^{13}\text{C}\{^1\text{H}\}$ NMR spectrum (75 MHz, toluene-d₈, 293 K) (δ , ppm): 21.8 (s, CH_3 iPr), 22.8 (s, CH_3 iPr), 22.9 (s, CH_3 iPr), 23.7 (s, CH_3 iPr), 24.6 (s, β - CH_2 THF), 28.4 (s, CH iPr), 29.9 (s, CH iPr), 30.5 (s, CH_3 tBu), 31.6 (s, CH_3 tBu), 44.2 (s, C tBu), 44.5 (s, C tBu), 67.2 (s, α - CH_2 THF), 123.0 (s, CH C₆H₃iPr₂), 123.5 (s, CH C₆H₃iPr₂), 123.8 (s, CH C₆H₃iPr₂), 124.0 (s, CH C₆H₃iPr₂), 142.2 (s, C C₆H₃iPr₂), 142.5 (s, C C₆H₃iPr₂), 143.2 (s, C C₆H₃iPr₂), 144.1 (s, C C₆H₃iPr₂), 178.9 (s, NCN).

General procedure for hydrosilylation reactions. To a solution of complex **2** (10 μmol) in C₆D₆ (0.6 mL) were added PhSiH₃ (0.5 mmol) and alkene (0.5 mmol). The reaction course was controlled by ^1H NMR spectroscopy. Conversion and selectivity were determined by integrating the remaining substrates and the newly formed hydrosilylation products in the ^1H , $^{13}\text{C}\{^1\text{H}\}$ and $^{29}\text{Si}\{^1\text{H}\}$ NMR spectra according to previously known data.

Figure S1. ^1H NMR spectrum of $[(\text{Amd}^{\text{tBu}})\text{Y}(\mu\text{-H})_2]_3(\text{THF})_2$ (**2**) (300 MHz, toluene-d₈, 293 K)

Figure S2. $^{13}\text{C}\{^1\text{H}\}$ NMR spectrum of $[(\text{Amd}^{\text{tBu}})\text{Y}(\mu\text{-H})_2]_3(\text{THF})_2$ (**2**) (75 MHz, toluene- d_8 , 293 K).