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Trends in atom and step economy are defining the shape of 
modern organic chemistry. C–H activation methods,1,2 solving 
selectivity issues3 and minimization of redox steps4–6 are in the 
streamline of the current stage of development. In this view, 
intramolecular redox-neutral transformations and, in particular, 
those which enable inert C–H bond activation, witness 
renaissance.7–9 One of such progressing direction is associated 
with 1,5-hydride shift triggered cyclization reaction,10–12 for 
which new catalysts, including asymmetric,13–19 tandem 
processes,20–27 extended and generalized substrate scopes have 
been developed.28–33 The classic variant of the reaction could be 
described as 1,5-shift of unactivated hydrogen from an ortho-
substituent in arylidene group of a Knoevenagel adduct, followed 
by ring closure into 6-membered cycle, i.e. ‘tert-amino effect 
reaction’ [Scheme 1(a)].

An obvious limitation of the above method is the predetermined 
six-membered size of the ring. In order to overcome it, several 
extensions have been developed recently. Governed by the 
elaboration of the efficient catalysts, it was shown that 1,4-, 1,6-, 
1,7- or even higher hydride shifts, although are less-profound, but 
still could proceed.9,31,32,34 Among them, 1,4-shift, which 
provides access to five-membered cycles, is the least developed, 
and, to the best of our knowledge, there are only four precedents 
in literature [Scheme 1(b)],23,35–37 and one report38 in which such 
process is claimed but, in fact, the data is misinterpreted (for 
details, see Online Supplementary Materials). In this view, 
extension of the substrate scope for this methodology is desired.

In this work we envisioned application of 1,4-hydride shift to 
the creation of spiro heterocyclic structures. The latter are highly 

valuable for drug development, since they combine rigidity 
with  increased degree of sp3-hybrid carbon atoms and 
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A rare process of 1,4-hydride or formal 1,6-hydride shift 
occurs in the (o-dialkylaminomethyl)arylidene imidazolones 
under the action of aluminum chloride. Only sterically 
hindered amino derivatives are able to enter the 
spirocyclization reaction, and the substituent would control 
this direction. Either five-membered indane in case of 
diisopropylamino derivatives, or seven-membered 
tetrahydrobenzazepines in case of dibenzylamino derivatives 
are formed in 46–84% yield.
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3-dimentionality.  Inspired by the structure of antihypertensive 
drug Irbesartan,39,40 we aimed to develop efficient method for 
synthesis of 1,3-diazaspiro[4.4]non-1-en-4-ones by means of 
1,4-hydride shift triggered cyclization [Scheme 1(c)].

Arylidene imidazolones 1, starting materials in the current 
investigation, could be accessed by a number of methods.41 The 
one chosen herein is the most straightforward and general, that 
is  cycloaddition of imines with methyl (Z)-2-[(1-methoxy
ethylidene)amino]acetate 2.42–45 By these means using previously 
established route to 2-(dialkylaminomethyl)benzaldehydes,36 we 
have synthesized series of starting materials 1 containing various 
substituents in aromatic ring and at nitrogen atom (for details, 
see Online Supplementary Materials). 

Study of the spirocyclization (Scheme 2, Table 1) of 
derivatives 1 started with screening of the Lewis acid promotor 
on the substrates 1a (R = H, R' = Pri) and 1b (R = H, 
R' = CH2Ph). As in our previous studies on 1,5-hydride shift, 
TiCl4 and AlCl3 were found to be catalysts of choice (SnCl4 had 
less profound activity), providing relatively fast consumption of 
starting material and robust transformation. However, to our 
surprise, depending on the starting material, different products 
were obtained. A product of 1,4-hydride shift, 2-aminoindane 
3a, was formed in case of diisopropylamino derivative 1a 
whereas tetrahydrobenzazepine product 4b was obtained in case 
of dibenzylamino derivative 1b. Along with major product 4b, 
small quantities of the five-membered by-product 3b were 
detected in the reaction with AlCl3. In order to elucidate, 
whether 5-membered product 3b is a primary kinetic product, 
which upon time rearranges into its isomer 4b, we performed 
additional experiment. When isolated compound 3b was heated 
with the catalyst under the reaction conditions, almost no 
conversion was observed. This indicates that compounds 3b and 
4b are formed independently. Moreover, upon processing 

diisopropylamino derivatives 1a, 3a no seven-membered cyclic 
products similar to 4b were detected even during prolonged 
reaction times. 

Thus, we decided to optimize both reactions – formation of 
five-membered cycle 3 for diisopropylamino derivatives, and 
formation of 7-membered cycle 4 for dibenzylamino derivatives. 
For both substrate series identical conditions were found to be 
effective: heating in a sealed tube with AlCl3 in dichloroethane at 
100 °C (oil bath temperature) provided 83% yield of indane 
derivative 3a (dr 9 : 1) and 73% yield of tetrahydroazepine 
derivative 4b (dr 9 : 1).

Products 3a and 4b were formed in good stereoselectivity. 
Their structure determination was performed based on standard 
set of NMR and HRMS analysis. Due to the presence of 
quaternary spiro center and putative stereodynamic process 
(which we assume to be 7-membered cycle’s inversion), NOE-
analysis was uninformative. However, based on the mechanism, 
for both products formation of kinetic trans-isomers with 
minimized steric repulsion in the transition state could be 
outlined. Indeed, the kinetic nature of major stereoisomer for 
compound 4b is experimentally proved (for details, see Online 
Supplementary Materials), as it epimerizes upon staying in the 
solution giving rise to a 3 : 1 mixture. In case of indanes 3, kinetic 
isomer should be also thermodynamically preferred due to 
rigidity of 5-membered cycle, providing eclipsed conformation.

Next, we studied the effect of the substitution at nitrogen 
atom. In the previous work of Mori and Akiyama,36 it was 
brilliantly shown, that bulky substituents at nitrogen atom 
facilitated hydride shift due to steric repulsion of two ortho-
substituents in the benzene ring. It provoked conformational 
switch of the aminomethyl substituent to the form, which was 
responsible for that process (Scheme 3). With smaller 
substituents, the hydride shift did not occur due to competing 
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Table  1  Spirocyclization of arylidene imidazolones 1a,b under varied reaction conditions.

Entry 1 (R) Conditions 1, conversion 3, yield 4, yield

1 1a (Pri) TiCl4, 100 °C, 2 h 100% 3a, 65% (dr 9 : 1) −
2 1a (Pri) AlCl3, 100 °C, 2 h 100% 3a, 83% (dr 9 : 1) −
3 1b (Bn) TiCl4, 100 °C, 3 h 100% 3b, traces 4b, 67% (dr 6 : 1)
4 1b (Bn) TiCl4, 100 °C, 1 h   60% 3b, traces 4b, 40% (dr 7 : 1)
5 1b (Bn) TiCl4, 100 °C, 2 h   90% 3b, traces 4b, 64% (dr 6 : 1)
6 1b (Bn) AlCl3, 100 °C, 3 h   92% 3b, 10% (dr 4 : 1) 4b, 73% (dr 9 : 1)
7 1b (Bn) AlCl3, 100 °C, 1 h   80% 3b, 12%, (dr 4 : 1) 4b, 46% (dr 15 : 1)
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nitrogen lone pair nucleophilic attack. This consideration could 
be fully applied to this work, namely, neither methylbenzylamino 
derivative 1c, nor piperidine derivative 1d did undergo 
transformation and only starting materials were recovered 
(>85%) after the final work up. In case of diphenylamino 
derivative 1e the degradation was observed and no hydride shift 
product could be isolated.

Next, we examined effect of the substitution in the aromatic 
ring on the reaction outcome (Scheme 4). Derivatives with 
4-methoxy (f, g), 4,5-dimethoxy (h, i), 3-fluoro (j) and 4-methyl 
(k) substitution pattern were studied. As expected, in all cases 
indanes 3 were obtained from diisopropylamino derivatives 
1a,f,h,j, while tetrahydroazepines 4 were formed from dibenzyl
amino derivatives 1b,g,i,k. For mono-methoxy substituted 
derivatives 1f,g there was almost no effect on the reaction course 
except for slightly decreased yields of products 3f (68%, 9 : 1 dr) 
and 4g (55%, 9 : 1 dr). Dimethoxy derivatives 1h,i readily reacted 
but a number of by-products was formed, which we associate 
with highly donating nature of these substituents. However, we 

were able to isolate in both series products 3h (59% yield, 
6 : 1 dr) and 4i (46% yield, 8 : 1 dr). Product 3j with fluorine in 
the aromatic ring was formed in a good yield of 74%, but 
surprisingly no stereoselectivity was observed. At the moment, 
we cannot rationalize this observation, although it could be 
attributed to proximal lone pair of fluorine, which may expand 
lifetime of iminium cation and lead to slow cyclization and thus 
lack of stereoselectivity. Finally, tetrahydrobenzazepine 4k with 
methyl substituent was also obtained in 58% yield. 

In summary, a study on 1,4-hydride shift in arylidene 
imidazolone series was performed. As in our previous reports on 
the related processes, classic Lewis acids such as AlCl3 were 
found to be reagents of choice. Only sterically hindered amino 
derivatives are able to enter such spirocyclization reaction, and 
critical substituent effect is found. For diisopropylamino 
derivatives only 1,4-hydride shift/cyclization takes places, 
providing indane derivatives, while for dibenzylamino derivatives 
we propose, that more feasible 1,6-hydride shift is likely to 
occur, giving rise to tetrahydrobenzazepines. 
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