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Pyridylphosphines represent a widely used subclass of P,N-
hybrid ligands in coordination chemistry.1–3 During the last 
decades, their metal complexes have been extensively 
investigated as catalysts and emissive materials.4–13 Because 
of  the presence of both soft (P) and harder (N) centers, 
pyridylphosphines exhibit hemilabile character and great 
structural diversity of the formed coordination compounds.14–19 
Currently, diphenyl(pyridin-2-yl)phosphine is the most common 
and commercially available representative of pyridylphosphines. 
Its Pdii complexes were found to be highly effective catalysts 
for  the methoxycarbonylation of propyne,20 while 
cis-[Ru(acac)2(PPh2Py)2] effectively catalyzes the hydration of 
nitriles.21 Diphenyl(pyridin-2-yl)phosphine-based complexes 
with Cui subgroup elements were also investigated due to their 
promising luminescent characteristics.22–25 Owing to all the 
above-mentioned success, initially achieved with diphenyl
(pyridin-2-yl)phosphine, many related ligands have also been 
synthesized and investigated.26,27 Thus, the derivatization of 
diphenyl(pyridin-2-yl)phosphine (e.g., via introduction of 
fluorophoric groups) represents an attractive route to new 
compounds with advanced functional properties.28,29 

In this work, we report on the synthesis and characterization 
of previously unknown 9-[6-(diphenylphosphino)pyridin-2-yl]-
9H-carbazole 1 and its phosphonium salt 2 (Scheme 1). 

Moreover, 1-based complexes with PdCl2 and CuI have been 
obtained and structurally characterized. At the first step of the 
synthesis, 2,6-dibromopyridine was reacted with 1 equiv. of 
carbazole in the presence of CuI, K3PO4 and trans-1,2-
diaminocyclohexane system used previously30 for some 
analogous reactants. After purification, 9-(6-bromopyridin-2-
yl)-9H-carbazole (CbPyBr) was isolated in 49% yield (see 
Scheme 1). At the second step, CbPyBr was lithiated with 
n-BuLi followed by in situ treatment with Ph2PCl. Target 1 was 
isolated after column chromatography and recrystallization in 
26% yield (non-optimized). The alkylation of 1 with MeI 
(benzene, room temperature) proceeded exclusively at the 
phosphorus atom to give the corresponding P-methyl
phosphonium salt 2 in 87% yield (see Scheme 1).

Structure 1 has been confirmed by NMR spectroscopy (1H, 
31P{1H}, 13C{1H}, 1H–13C HSQC, 1H–13C HMBC, 1H–31P 
HMBC, 1H–1H COSY) and microanalysis data. The 31P{1H} 
NMR spectrum of 1 shows a sharp singlet with dP = –2.91 ppm 
(see Online Supplementary Materials, Figure S2). The 
31P{1H}  NMR resonance of phosphonium salt 2 appears as a 
singlet at 20.75 ppm (Figure S9) that is significantly downfield 
shifted as compared to 1. In the 1H NMR spectrum of 2, methyl 
protons resonate as a doublet at 3.25 ppm with the typical 2JP–H 
coupling constant of 14.9 Hz (Figure S8).
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9-[6-(Diphenylphosphino)pyridin-2-yl]-9H-carbazole was 
synthesized in two steps involving cross-coupling of 
2,6-dibromopyridine with carbazole followed by treatment 
of the formed monobromo pyridine derivative with Ph2PCl. 
The coordination properties of the synthesized ligand were 
demonstrated by the reaction with Pd(COD)Cl2 and CuI. 
The alkylation of the title compound with MeI proceeds 
selectively at the P atom to afford the corresponding 
phosphonium salt.
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Scheme  1  Reagents and conditions: i, carbazole, CuI, K3PO4, trans-1,2-diaminocyclohexane, 110 °C, 1,4-dioxane (cf. ref. 30); ii, BunLi, –80 °C, Et2O–
hexane, then Ph2PCl, –80 °C; iii, MeI, benzene, room temperature.
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To demonstrate coordination properties of synthesized ligand 
1, its reactions with Pd(COD)Cl2 and CuI have been performed. 
The choice of Pd(COD)Cl2 as a source of Pdii was due to its good 
solubility in CH2Cl2 and ability to readily exchange the COD 
ligand. The reaction of 2 equiv. of 1 with Pd(COD)Cl2 in CH2Cl2 
produces a precipitate, recrystallization of which from DMF 
affords single crystals of square planar complex 3 of composition 
PdL2Cl2 (L = 1). Reacting 3 equiv. of 1 with 2 equiv. of CuI in 
the MeCN at ambient temperature leads to the formation of a 
poorly soluble white precipitate. Recrystallization of the latter 
from MeCN gives crystals of complex 4 Cu2L3I2 (L = 1). Crystal 
structures for isolated complexes were determined by single 
crystal X-ray diffraction (SC-XRD) analysis (Figure 1).† 
According to the SC-XRD data, complex 3 crystallizes as a 
solvate with DMF, and its asymmetric unit contains one molecule 
of 3. The Pd atom adopts a nearly square planar coordination 
environment (t4 ~ 0.079)31 of cis-configuration. Each phosphine 
ligand is coordinated to the Pd atom through the P atom, while 
the N atom of the pyridine ring remains uncoordinated. The 
Pd–P (~2.25 Å) and Pd–Cl (~2.35 Å) bond lengths are typical 
for the similar complexes.32–34 The averaged planes of the 
pyridine and carbazole systems of 1 are twisted relative to each 
other (twisted angles 38.03° and 40.34°). Complex 4 crystallizes 
with one molecule per asymmetric unit. Each molecule of 4 
consists of a dimeric butterfly-shaped {Cu2I2} unit and three 
P-coordinated ligands 1. One of the two Cu atoms adopts a 
distorted {Cu@P2I2} tetrahedral geometry (t4 ~ 0.90)31 with 
Cu–I and Cu–P bond lengths being comparable to those known 
for similar complexes.35,36 The second Cu atom of the {Cu2I2} 
unit has a distorted {Cu@PI2} trigonal coordination geometry 
with Cu–P and Cu–I bond lengths of ~2.22 and ~2.54–2.55 Å, 
respectively. The fact that the interatomic distance between the 
Cu atoms of the {Cu2I2} moiety [3.008(2) Å] is significantly 

longer than the double Bondi’s vdW radius for Cu (2.80 Å)37 
rules out metallophilic interaction. The twist angle between the 
averaged planes of pyridine and carbazole rings of 1 ligands 
varies from 35.61° to 38.58°. An absence of coordination of 
pyridine rings toward metal centers is most probably due to the 
presence of a carbazole substituent in ligand 1, which creates 
steric hindrances.

In conclusion, 9-[6-(diphenylphosphino)pyridin-2-yl]-9H-
carbazole, a new promising ligand, has been synthesized and 
characterized. The alkylation of this novel pyridylphosphine 
with MeI occurs exclusively at the phosphorus atom. In order to 
demonstrate coordination behavior of the synthesized ligand, its 
complexes with PdCl2 and CuI were obtained and characterized 
by SC-XRD analysis. This study contributes to the synthetic 
chemistry of organophosphines and the coordination chemistry 
of P,N-donor ligands.
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Figure  1  (a) X-ray derived structure of 3. Selected interatomic distances 
and angles: Pd(1)–P(2) 2.2461(11), Pd(1)–P(1) 2.2559(12), Pd(1)–Cl(2) 
2.3419(12), Pd(1)–Cl(1) 2.3511(11), P(2)–Pd(1)–P(1) 101.39(4), 
P(2)–Pd(1)–Cl(2) 84.44(4), P(1)–Pd(1)–Cl(2) 173.39(4), P(2)–Pd(1)–Cl(1) 
175.49(4), P(1)–Pd(1)–Cl(1) 83.10(4), Cl(2)–Pd(1)–Cl(1) 91.11(4). 
(b) X-ray derived structure of 4. Selected interatomic distances and angles: 
I(1)–Cu(1) 2.5490(17), I(1)–Cu(2) 2.7328(17), I(2)–Cu(1) 2.5385(16), 
I(2)–Cu(2) 2.7322(16), Cu(1)–P(1) 2.218(3), Cu(1)–Cu(2) 3.003(2), 
Cu(2)–P(2) 2.281(3), Cu(2)–P(3) 2.293(3), Cu(1)–I(1)–Cu(2) 69.21(5), 
Cu(1)–I(2)–Cu(2) 69.36(5), P(1)–Cu(1)–I(2) 122.59(9), P(1)–Cu(1)–I(1) 
122.29(9), I(2)–Cu(1)–I(1) 114.61(6), P(2)–Cu(2)–P(3) 121.26(11), 
P(2)–Cu(2)–I(2) 107.05(9), P(3)–Cu(2)–I(2) 106.67(9), P(2)–Cu(2)–I(1) 
105.67(9), P(3)–Cu(2)–I(1) 111.54(8), I(2)–Cu(2)–I(1) 103.15(5).
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