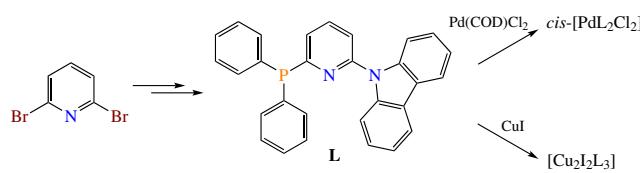


9-[6-(Diphenylphosphino)pyridin-2-yl]-9H-carbazole: synthesis and coordination properties toward Cu^I and Pd^{II}

Andrey Yu. Baranov,^a Irina Yu. Bagryanskaya^b and Alexander V. Artem'ev^{*a}

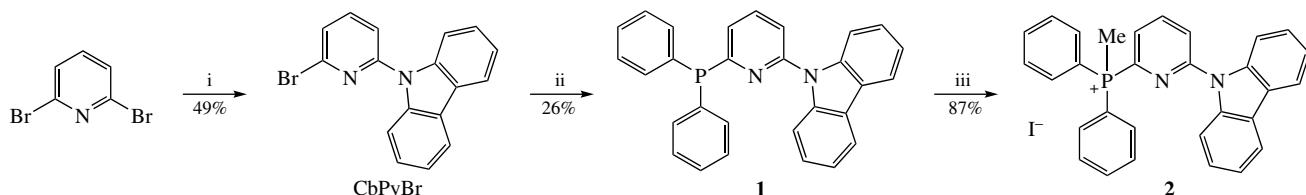
^a A. V. Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russian Federation. E-mail: chemisufarm@yandex.ru

^b N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russian Federation


DOI: 10.71267/mencom.7548

9-[6-(Diphenylphosphino)pyridin-2-yl]-9H-carbazole was synthesized in two steps involving cross-coupling of 2,6-dibromopyridine with carbazole followed by treatment of the formed monobromo pyridine derivative with Ph₂PCl. The coordination properties of the synthesized ligand were demonstrated by the reaction with Pd(COD)Cl₂ and CuI. The alkylation of the title compound with MeI proceeds selectively at the P atom to afford the corresponding phosphonium salt.

Keywords: 9-[6-(diphenylphosphino)pyridin-2-yl]-9H-carbazole, phosphonium salt, copper(I) iodide complexes, palladium(II) chloride complexes, crystal structure.

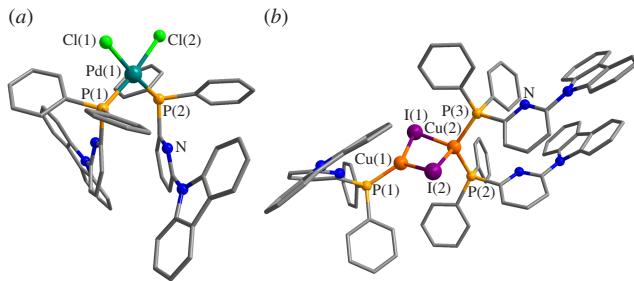

Pyridylphosphines represent a widely used subclass of *P,N*-hybrid ligands in coordination chemistry.^{1–3} During the last decades, their metal complexes have been extensively investigated as catalysts and emissive materials.^{4–13} Because of the presence of both soft (P) and harder (N) centers, pyridylphosphines exhibit hemilabile character and great structural diversity of the formed coordination compounds.^{14–19} Currently, diphenyl(pyridin-2-yl)phosphine is the most common and commercially available representative of pyridylphosphines. Its Pd^{II} complexes were found to be highly effective catalysts for the methoxycarbonylation of propyne,²⁰ while *cis*-[Ru(acac)₂(PPh₂Py)₂] effectively catalyzes the hydration of nitriles.²¹ Diphenyl(pyridin-2-yl)phosphine-based complexes with Cu^I subgroup elements were also investigated due to their promising luminescent characteristics.^{22–25} Owing to all the above-mentioned success, initially achieved with diphenyl(pyridin-2-yl)phosphine, many related ligands have also been synthesized and investigated.^{26,27} Thus, the derivatization of diphenyl(pyridin-2-yl)phosphine (e.g., *via* introduction of fluorophoric groups) represents an attractive route to new compounds with advanced functional properties.^{28,29}

In this work, we report on the synthesis and characterization of previously unknown 9-[6-(diphenylphosphino)pyridin-2-yl]-9H-carbazole **1** and its phosphonium salt **2** (Scheme 1).

Moreover, **1**-based complexes with PdCl₂ and CuI have been obtained and structurally characterized. At the first step of the synthesis, 2,6-dibromopyridine was reacted with 1 equiv. of carbazole in the presence of CuI, K₃PO₄ and *trans*-1,2-diaminocyclohexane system used previously³⁰ for some analogous reactants. After purification, 9-(6-bromopyridin-2-yl)-9H-carbazole (CbPyBr) was isolated in 49% yield (see Scheme 1). At the second step, CbPyBr was lithiated with *n*-BuLi followed by *in situ* treatment with Ph₂PCl. Target **1** was isolated after column chromatography and recrystallization in 26% yield (non-optimized). The alkylation of **1** with MeI (benzene, room temperature) proceeded exclusively at the phosphorus atom to give the corresponding *P*-methylphosphonium salt **2** in 87% yield (see Scheme 1).

Structure **1** has been confirmed by NMR spectroscopy (¹H, ³¹P{¹H}, ¹³C{¹H}, ¹H–¹³C HSQC, ¹H–³¹P HMBC, ¹H–¹H COSY) and microanalysis data. The ³¹P{¹H} NMR spectrum of **1** shows a sharp singlet with $\delta_{\text{P}} = -2.91$ ppm (see Online Supplementary Materials, Figure S2). The ³¹P{¹H} NMR resonance of phosphonium salt **2** appears as a singlet at 20.75 ppm (Figure S9) that is significantly downfield shifted as compared to **1**. In the ¹H NMR spectrum of **2**, methyl protons resonate as a doublet at 3.25 ppm with the typical ²J_{P–H} coupling constant of 14.9 Hz (Figure S8).

Scheme 1 Reagents and conditions: i, carbazole, CuI, K₃PO₄, *trans*-1,2-diaminocyclohexane, 110 °C, 1,4-dioxane (*cf.* ref. 30); ii, BuⁿLi, –80 °C, Et₂O–hexane, then Ph₂PCl, –80 °C; iii, MeI, benzene, room temperature.


To demonstrate coordination properties of synthesized ligand **1**, its reactions with $\text{Pd}(\text{COD})\text{Cl}_2$ and CuI have been performed. The choice of $\text{Pd}(\text{COD})\text{Cl}_2$ as a source of Pd^{II} was due to its good solubility in CH_2Cl_2 and ability to readily exchange the COD ligand. The reaction of 2 equiv. of **1** with $\text{Pd}(\text{COD})\text{Cl}_2$ in CH_2Cl_2 produces a precipitate, recrystallization of which from DMF affords single crystals of square planar complex **3** of composition PdL_2Cl_2 ($\text{L} = \mathbf{1}$). Reacting 3 equiv. of **1** with 2 equiv. of CuI in the MeCN at ambient temperature leads to the formation of a poorly soluble white precipitate. Recrystallization of the latter from MeCN gives crystals of complex **4** $\text{Cu}_2\text{L}_3\text{I}_2$ ($\text{L} = \mathbf{1}$). Crystal structures for isolated complexes were determined by single crystal X-ray diffraction (SC-XRD) analysis (Figure 1).[†] According to the SC-XRD data, complex **3** crystallizes as a solvate with DMF, and its asymmetric unit contains one molecule of **3**. The Pd atom adopts a nearly square planar coordination environment ($\tau_4 \sim 0.079$)³¹ of *cis*-configuration. Each phosphine ligand is coordinated to the Pd atom through the P atom, while the N atom of the pyridine ring remains uncoordinated. The Pd–P (~ 2.25 Å) and Pd–Cl (~ 2.35 Å) bond lengths are typical for the similar complexes.^{32–34} The averaged planes of the pyridine and carbazole systems of **1** are twisted relative to each other (twisted angles 38.03° and 40.34°). Complex **4** crystallizes with one molecule per asymmetric unit. Each molecule of **4** consists of a dimeric butterfly-shaped $\{\text{Cu}_2\text{I}_2\}$ unit and three P-coordinated ligands **1**. One of the two Cu atoms adopts a distorted $\{\text{Cu}_2\text{I}_2\}$ tetrahedral geometry ($\tau_4 \sim 0.90$)³¹ with Cu–I and Cu–P bond lengths being comparable to those known for similar complexes.^{35,36} The second Cu atom of the $\{\text{Cu}_2\text{I}_2\}$ unit has a distorted $\{\text{Cu}_2\text{I}_2\}$ trigonal coordination geometry with Cu–P and Cu–I bond lengths of ~ 2.22 and ~ 2.54 – 2.55 Å, respectively. The fact that the interatomic distance between the Cu atoms of the $\{\text{Cu}_2\text{I}_2\}$ moiety [3.008(2) Å] is significantly

[†] *Crystal data for **3**.* The crystals were grown by slow diffusion of Et_2O vapors into DMF solution at room temperature. $\text{C}_{58}\text{H}_{42}\text{Cl}_2\text{N}_4\text{P}_2\text{Pd}$, $M = 1034.19$, monoclinic, space group $P2_1/n$, 200 K, $a = 10.6584(6)$, $b = 19.1610(8)$ and $c = 26.4113(16)$ Å, $\beta = 97.577(2)^\circ$, $Z = 4$, $V = 5346.8(5)$ Å³. A crystal with a size of $0.35 \times 0.05 \times 0.02$ mm was selected and intensities with 10519 reflections were measured. $\mu(\text{MoK}\alpha) = 0.55$ mm^{−1}, $R_{\text{int}} = 0.113$, which were used in all calculations. The final R_1 was 0.053 [$F^2 > 2\sigma(F^2)$] and $wR(F^2)$ was 0.133. The free solvent accessible volume in compound **3** derived from PLATON routine analysis was found to be 16.9% (902.0 Å³). This volume is occupied by highly disordered solvent molecules that could not be modeled as a set of discrete atomic sites. We employed the PLATON/SQUEEZE procedure to calculate the contribution to diffraction from the solvent region and thereby produced a set of solvent-free diffraction intensities. The most probable solvent for **3** is DMF.

*Crystal data for **4** [Cu₂I₂L₃].* The crystals were grown by slow evaporation of MeCN solution at room temperature. $\text{C}_{87}\text{H}_{63}\text{Cu}_2\text{I}_2\text{N}_6\text{P}_3$, $M = 1666.22$, monoclinic, space group $P2_1/c$, 200 K, $a = 11.658(3)$, $b = 59.789(16)$ and $c = 10.702(3)$ Å, $\beta = 107.259(4)^\circ$, $Z = 4$, $V = 7124(3)$ Å³. A crystal with a size of $0.20 \times 0.15 \times 0.10$ mm was selected and intensities with 12545 reflections were measured. $\mu(\text{MoK}\alpha) = 1.58$ mm^{−1}, $R_{\text{int}} = 0.068$, which were used in all calculations. The final R_1 was 0.087 [$F^2 > 2\sigma(F^2)$] and $wR(F^2)$ was 0.197.

The data for crystals of **3** and **4** were collected on a Bruker Kappa Apex II CCD diffractometer using ϕ, ω -scans of narrow (0.5°) frames with MoKα radiation ($\lambda = 0.71073$ Å) and a graphite monochromator. The structures were solved by SHELXT 2014/5 and refined by a full matrix least-squares anisotropic-isotropic (for H atoms) procedure using the SHELXL-2018/3 programs set.³⁸ Absorption corrections were applied using the empirical multiscan method with the SADABS³⁹ program. The positions of the hydrogen atoms were calculated with the riding model.

CCDC 2361234 and 2361235 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via <https://www.ccdc.cam.ac.uk>.

Figure 1 (a) X-ray derived structure of **3**. Selected interatomic distances and angles: Pd(1)–P(2) 2.2461(11), Pd(1)–P(1) 2.2559(12), Pd(1)–Cl(2) 2.3419(12), Pd(1)–Cl(1) 2.3511(11), P(2)–Pd(1)–P(1) 101.39(4), P(2)–Pd(1)–Cl(2) 84.44(4), P(1)–Pd(1)–Cl(2) 173.39(4), P(2)–Pd(1)–Cl(1) 175.49(4), P(1)–Pd(1)–Cl(1) 83.10(4), Cl(2)–Pd(1)–Cl(1) 91.11(4). (b) X-ray derived structure of **4**. Selected interatomic distances and angles: I(1)–Cu(1) 2.5490(17), I(1)–Cu(2) 2.7328(17), I(2)–Cu(1) 2.5385(16), I(2)–Cu(2) 2.7322(16), Cu(1)–P(1) 2.2183(3), Cu(1)–Cu(2) 3.003(2), Cu(2)–P(2) 2.281(3), Cu(2)–P(3) 2.293(3), Cu(1)–I(1)–Cu(2) 69.21(5), Cu(1)–I(2)–Cu(2) 69.36(5), P(1)–Cu(1)–I(2) 122.59(9), P(1)–Cu(1)–I(1) 122.29(9), I(2)–Cu(1)–I(1) 114.61(6), P(2)–Cu(2)–P(3) 121.26(11), P(2)–Cu(2)–I(2) 107.05(9), P(3)–Cu(2)–I(2) 106.67(9), P(2)–Cu(2)–I(1) 105.67(9), P(3)–Cu(2)–I(1) 111.54(8), I(2)–Cu(2)–I(1) 103.15(5).

longer than the double Bondi's vdW radius for Cu (2.80 Å)³⁷ rules out metallophilic interaction. The twist angle between the averaged planes of pyridine and carbazole rings of **1** ligands varies from 35.61° to 38.58° . An absence of coordination of pyridine rings toward metal centers is most probably due to the presence of a carbazole substituent in ligand **1**, which creates steric hindrances.

In conclusion, 9-[6-(diphenylphosphino)pyridin-2-yl]-9H-carbazole, a new promising ligand, has been synthesized and characterized. The alkylation of this novel pyridylphosphine with MeI occurs exclusively at the phosphorus atom. In order to demonstrate coordination behavior of the synthesized ligand, its complexes with PdCl_2 and CuI were obtained and characterized by SC-XRD analysis. This study contributes to the synthetic chemistry of organophosphines and the coordination chemistry of *P,N*-donor ligands.

This work was supported by the Ministry of Science and Higher Education of the Russian Federation. I. Yu. B. acknowledges the Multi-Access Chemical Research Center SB RAS for single crystal X-ray diffraction measurements.

Online Supplementary Materials

Supplementary data associated with this article can be found in the online version at doi: 10.71267/mencom.7548.

References

- 1 G. R. Newkome, *Chem. Rev.*, 1993, **93**, 2067; <https://doi.org/10.1021/cr00022a006>.
- 2 W. A. Munzeiwa, B. Omondi and V. O. Nyamori, *Beilstein J. Org. Chem.*, 2020, **16**, 362; <https://doi.org/10.3762/bjoc.16.35>.
- 3 M. P. Davydova, T. S. Sukhikh and A. V. Artem'ev, *Mendelev Commun.*, 2024, **34**, 345; <https://doi.org/10.1016/j.mencom.2024.04.011>.
- 4 P. Espinet and K. Soulantica, *Coord. Chem. Rev.*, 1999, **193–195**, 499; [https://doi.org/10.1016/S0010-8545\(99\)00140-X](https://doi.org/10.1016/S0010-8545(99)00140-X).
- 5 M. K. Rong, F. Holtrop, J. C. Slootweg and K. Lammertsma, *Coord. Chem. Rev.*, 2019, **380**, 1; <https://doi.org/10.1016/j.ccr.2018.08.016>.
- 6 O. Crespo, M. C. Gimeno, A. Laguna and C. Larraz, *Z. Naturforsch. B*, 2009, **64**, 1525; <https://doi.org/10.1515/znb-2009-11-1236>.
- 7 E. I. Musina, A. V. Shamsieva, I. D. Strelnik, T. P. Gerasimova, D. B. Krivolapov, I. E. Kolesnikov, E. V. Grachova, S. P. Tunik, C. Bannwarth, S. Grimme, S. A. Katsyuba, A. A. Karasik and O. G. Sinyashin, *Dalton Trans.*, 2016, **45**, 2250; <https://doi.org/10.1039/C5DT03346B>.
- 8 I. R. Dayanova, A. V. Shamsieva, I. D. Strelnik, T. P. Gerasimova, I. E. Kolesnikov, R. R. Fayzullin, D. R. Islamov, A. F. Saifina, E. I. Musina, E. Hey-Hawkins and A. A. Karasik, *Inorg. Chem.*, 2021, **60**, 5402; <https://doi.org/10.1021/acs.inorgchem.1c00442>.

9 M. J. Calhorda, C. Ceamanos, O. Crespo, C. M. Gimeno, A. Laguna, C. Larraz, P. D. Vaz and M. D. Villacampa, *Inorg. Chem.*, 2010, **49**, 8255; <https://doi.org/10.1021/ic100413x>.

10 O. Crespo, M. C. Gimeno, A. Laguna, F. J. Lahoz and C. Larraz, *Inorg. Chem.*, 2011, **50**, 9533; <https://doi.org/10.1021/ic201245q>.

11 A. V. Artem'ev, A. Yu. Baranov, A. S. Berezin, U. A. Lapteva, D. G. Samsonenko and I. Yu. Bagryanskaya, *Chem. – Eur. J.*, 2022, **28**, e202201563; <https://doi.org/10.1002/chem.202201563>.

12 G. Valdebenito, S. Parra-Melipan, C. F. Dinamarca, V. López, A. Vega, G. Abarca and P. Aguirre, *Mol. Catal.*, 2023, **542**, 113075; <https://doi.org/10.1016/j.mcat.2023.113075>.

13 P. Li, M. Wang, L. Chen, J. Liu, Z. Zhao and L. Sun, *Dalton Trans.*, 2009, 1919; <https://doi.org/10.1039/B814336F>.

14 A. Yu. Baranov, S. O. Slavova, A. S. Berezin, S. K. Petrovskii, D. G. Samsonenko, I. Yu. Bagryanskaya, V. P. Fedin, E. V. Grachova and A. V. Artem'ev, *Inorg. Chem.*, 2022, **61**, 10925; <https://doi.org/10.1021/acs.inorgchem.2c01474>.

15 Ya. V. Demyanov, T. S. Sukhikh, I. Yu. Bagryanskaya, A. S. Novikov, M. I. Rakhamanova and A. V. Artem'ev, *Polyhedron*, 2024, **252**, 116901; <https://doi.org/10.1016/j.poly.2024.116901>.

16 K. Chen and V. J. Catalano, *Eur. J. Inorg. Chem.*, 2015, 5254; <https://doi.org/10.1002/ejic.201500925>.

17 E. de la Encarnación, J. Pons, R. Yáñez and J. Ros, *Inorg. Chim. Acta*, 2006, **359**, 745; <https://doi.org/10.1016/j.ica.2004.12.061>.

18 J. M. Busch, F. R. Rehak, V. Ferraro, M. Nieger, M. Kemell, O. Fuhr, W. Klopper and S. Bräse, *ACS Omega*, 2024, **9**, 2220; <https://doi.org/10.1021/acsomega.3c05755>.

19 M. Cao, N. Li, C. Tan, Z. Yan, L. Meng, Q. Xiao, H. Wang and X.-F. Wang, *Cryst. Growth Des.*, 2024, **24**, 2041; <https://doi.org/10.1021/acs.cgd.3c01338>.

20 E. Drent, P. Arnoldy and P. H. M. Budzelaar, *J. Organomet. Chem.*, 1993, **455**, 247; [https://doi.org/10.1016/0022-328X\(93\)80406-2](https://doi.org/10.1016/0022-328X(93)80406-2).

21 T. Oshiki, H. Yamashita, K. Sawada, M. Utsunomiya, K. Takahashi and K. Takai, *Organometallics*, 2005, **24**, 6287; <https://doi.org/10.1021/om050792b>.

22 A. Neshat, R. B. Aghakhanpour, P. Mastorilli, S. Todisco, F. Molani and A. Wojtczak, *Polyhedron*, 2018, **154**, 217; <https://doi.org/10.1016/j.poly.2018.07.045>.

23 D. M. Zink, L. Bergmann, D. Ambrosek, M. Wallesch, D. Volz and M. Mydlak, *Transl. Mater. Res.*, 2014, **1**, 15003; <https://doi.org/10.1088/2053-1613/1/1/015003>.

24 D. M. Zink, D. Volz, T. Baumann, M. Mydlak, H. Flügge, J. Friedrichs, M. Nieger and S. Bräse, *Chem. Mater.*, 2013, **25**, 4471; <https://doi.org/10.1021/cm4018375>.

25 G. Romo-Islas, J. S. Ward, K. Rissanen and L. Rodríguez, *Inorg. Chem.*, 2023, **62**, 8101; <https://doi.org/10.1021/acs.inorgchem.3c00046>.

26 S. Hanf, R. García-Rodríguez, S. Feldmann, A. D. Bond, E. Hey-Hawkins and D. S. Wright, *Dalton Trans.*, 2017, **46**, 814; <https://doi.org/10.1039/C6DT04390A>.

27 M. Klein, N. Demirel, A. Schinabeck, H. Yersin and J. Sundermeyer, *Molecules*, 2020, **25**, 3390; <https://doi.org/10.3390/molecules25173990>.

28 M. Wallesch, D. Volz, D. M. Zink, U. Schepers, M. Nieger, T. Baumann and S. Bräse, *Chem. – Eur. J.*, 2014, **20**, 6578; <https://doi.org/10.1002/chem.201402060>.

29 R. Czerwieniec, M. J. Leitl, H. H. H. Homeier and H. Yersin, *Coord. Chem. Rev.*, 2016, **325**, 2; <https://doi.org/10.1016/j.ccr.2016.06.016>.

30 S.-G. Ihn, N. Lee, S. O. Jeon, M. Sim, H. Kang, Y. Jung, D. H. Huh, Y. M. Son, S. Y. Lee, M. Numata, H. Miyazaki, R. Gómez-Bombarelli, J. Aguilera-Iparraguirre, T. Hirzel, A. Aspuru-Guzik, S. Kim and S. Lee, *Adv. Sci.*, 2017, **4**, 1600502; <https://doi.org/10.1002/advs.201600502>.

31 L. Yang, D. R. Powell and R. P. Houser, *Dalton Trans.*, 2007, 955; <https://doi.org/10.1039/B617136B>.

32 I. Warad, A. S. Aldwayyan, F. M. Al-Jekhdedab, M. I. Choudhary and S. Yousuf, *Acta Crystallogr., Sect. E*, 2012, **68**, m984; <https://doi.org/10.1107/S1600536812028310>.

33 N. F. Romashev, I. V. Bakaev, V. I. Komlyagina, I. S. Fomenko, Yu. A. Laricheva, P. A. Petrov and A. L. Gushchin, *J. Struct. Chem.*, 2021, **62**, 1573; <https://doi.org/10.1134/S0022476621100127>.

34 T. S. Sukhikh, M. P. Davydova and A. V. Artem'ev, *Mendeleev Commun.*, 2023, **33**, 171; <https://doi.org/10.1016/j.mencom.2023.02.007>.

35 X. Li, J. Zhang, Z. Zhao, X. Yu, P. Li, Y. Yao, Z. Liu, Q. Jin, Z. Bian, Z. Lu and C. Huang, *ACS Appl. Mater. Interfaces*, 2019, **11**, 3262; <https://doi.org/10.1021/acsami.8b15897>.

36 Y. Okano, H. Ohara, A. Kobayashi, M. Yoshida and M. Kato, *Inorg. Chem.*, 2016, **55**, 5227; <https://doi.org/10.1021/acs.inorgchem.6b00161>.

37 A. Bondi, *J. Phys. Chem.*, 1964, **68**, 441; <https://doi.org/10.1021/j100785a001>.

38 G. M. Sheldrick, *Acta Crystallogr.*, 2015, **A71**, 3; <https://doi.org/10.1107/S2053273314026370>.

39 SADABS, Version 2008/1, Bruker AXS, Madison, WI, USA, 2008.

Received: 21st June 2024; Com. 24/7548