

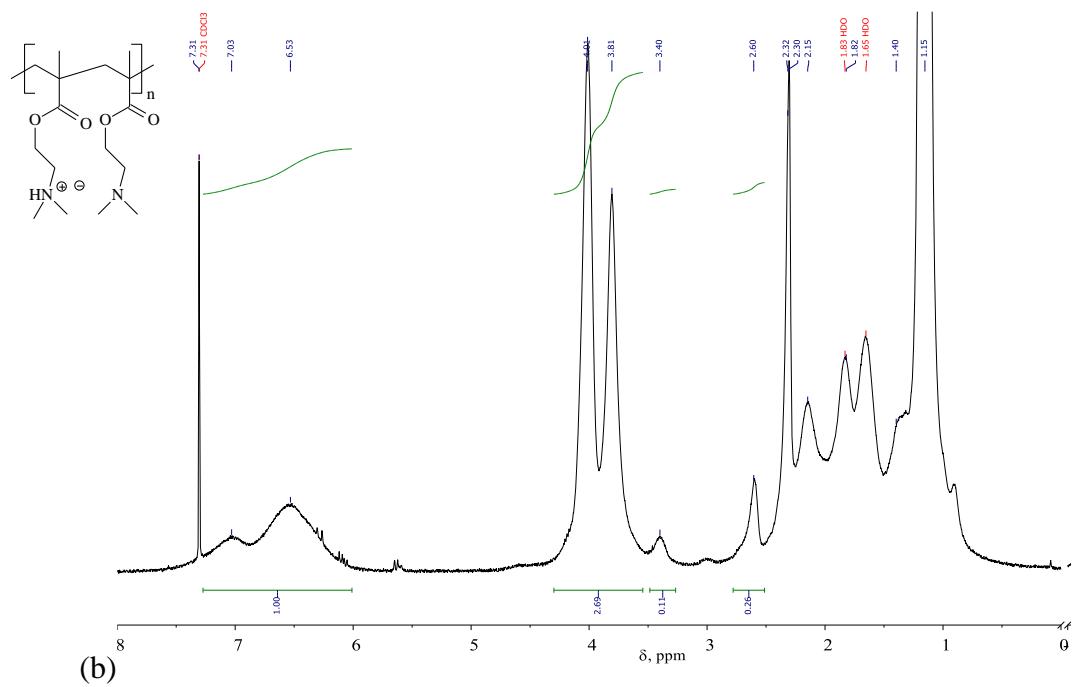
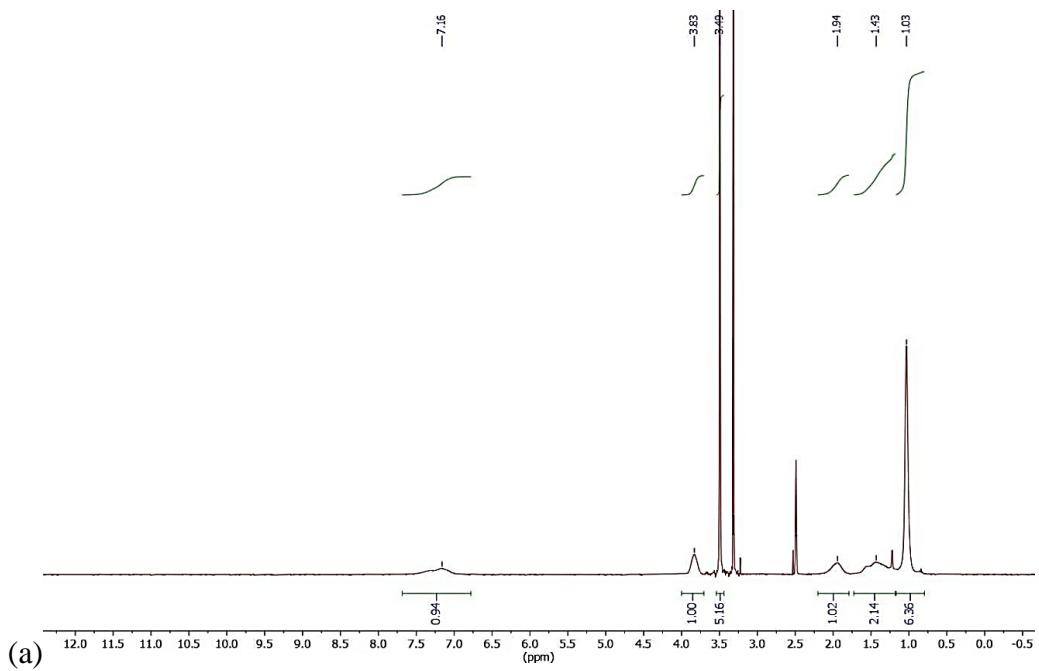
Aqueous RAFT (co)polymerization of *N*-isopropylacrylamide above lower critical solution temperature of poly(*N*-isopropylacrylamide) and stimuli-responsive properties of the polymers formed

Elena A. Ivanova, Egor I. Vlasov, Marianna Z. Bekenova, Georgii A. Simenido, Anna V. Plutalova, Elena Yu. Kozhunova, Elizaveta K. Kuznetsova, Elena N. Golubeva and Elena V. Chernikova

Experimental part

Polymer synthesis

The calculated amounts of NIPA or NIPA and DMAEMA, the RAFT agent (10^{-2} – 10^{-3} mol/L) and the ammonium persulfate (PSA) initiator ($(1.0$ – $1.8) \times 10^{-3}$ mol/L) were dissolved in 5 mL of water. The mixture was then poured into an ampoule and degassed to a residual pressure of $\sim 5 \times 10^{-3}$ Torr by repeating the freeze-thaw cycles three times. The ampoules were sealed and placed in a thermostat, where they were kept for 24 h at 60 °C with constant stirring. Upon completion of the polymerization, the ampoules were opened, the polymer was dissolved in excess water; then the polymer was dialyzed to remove monomer residues and low molecular weight fractions, and freeze-dried until the solvent was completely removed.



Methods

The SEC measurements were performed in DMF at 50 °C containing 0.1 wt% of LiBr at 50 °C using a chromatograph GPC-120 “PolymerLabs” equipped with a refractive index detector and two PLgel 5 μm MIXED B columns for the MM range from 5×10^2 to 1×10^7 g mol⁻¹. The SEC system was calibrated using narrow-dispersed linear poly(methyl methacrylate) (PMMA) standards.

NMR spectra were recorded on a Bruker Avance III HD (400 MHz ¹H) in DMSO-d₆ for PNIPA and PEG-*b*-PNIPA and CDCl₃ for copolymers of NIPA and DMAEMA.

DLS measurements of 1 wt. % aqueous polymer solutions were performed by a static/dynamic compact goniometer (DLS/SLS-5000, ALV, Langen, Germany) at a scattering angle of 90°. A HeNe laser with a power of 22 mW emitting a polarized light at $\lambda = 633$ nm was used as the incident beam. At each temperature, the samples were left for 30 min to equilibrate. Distributions over decay times were obtained using a nonlinear regularized inverse Laplace transformation method (CONTIN).

Turbidimetry was performed on a Shimadzu UV-2401PC spectrophotometer. An 1 wt.% aqueous polymer solution was poured into the cuvette. The cuvette was placed in a spectrophotometer and the absorbance of the solution was recorded at a wavelength of 550 nm. The solution was heated using additional equipment based on Arduino Uno in increments of 1 °C. Upon reaching the set temperature, the solution was kept for 1 – 2 min and the turbidity of the solution was recorded.

Figure S1 ^1H NMR spectra of the PEG1-*b*-PNIPA in DMSO- d_6 (a) and copolymer of DMAEMA and NIPA ($f_{\text{DMAEMA}} = 9.4$ mol. %) in CDCl_3 (b).