

**First example of isatin used in four-component synthesis
of ionic unsymmetrical scaffold with three different heterocyclic rings**

**Michail N. Elinson, Yuliya E. Ryzhkova, Varvara M. Kalashnikova,
Alexander O. Chizhov, Artem N. Fakhrutdinov and Mikhail P. Egorov**

Table of contents

General information	S1
Typical procedure	S1
Characterization of synthesized compounds	S2
^1H and ^{13}C NMR spectra.....	S6
2D NMR spectra and description for compound 3a	S15

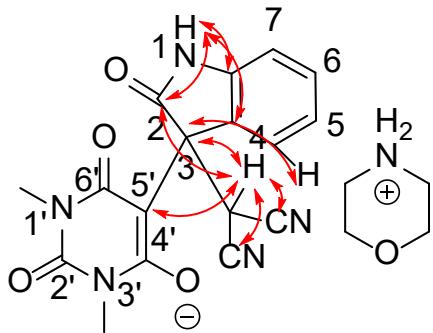
General information


The solvents and reagents were purchased from commercial sources and used as received. Isatin **1i** was obtained from isatin **1a** and bromine in acetic acid according to literature data [B.B. Semenov *et al.* *Russ. Chem. Bull., Int. Ed.*, 2005, **54**, 988. <https://doi.org/10.1007/s11172-005-0345-x>].

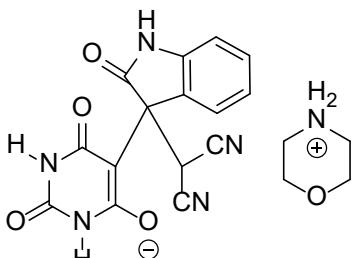
All melting points were measured with a Gallenkamp melting-point apparatus and were uncorrected. ^1H and ^{13}C NMR spectra were recorded in $\text{DMSO}-d_6$ with a Bruker AM300 spectrometer at ambient temperature. Two-dimensional (2D) NMR spectra were registered with a Bruker AV400 spectrometer at ambient temperature. Chemical shift values are relative to Me_4Si . In some cases, the cationic amino groups of salts were subjected to exchange processes in $\text{DMSO}-d_6$ and were absent from ^1H NMR spectra or had underestimated integral values. The IR spectrum was recorded with a Bruker ALPHA-T FT-IR spectrometer in a KBr pellet. High-resolution mass spectra (HRMS) were measured on a Bruker micrOTOF II instrument using electrospray ionization (ESI).

Typical procedure

Isatin **1** (1 mmol), barbituric acid **2** (1 mmol), malononitrile (1 mmole) and morpholine (1 mmol) were stirred in 4 ml of ethanol for 1 h at ambient temperature. Then solvent was evaporated and the solid was crystallized from ethanol to isolate **3b-d,f**. In the case **3a,e,j-l** the reaction mixture was evaporated to the volume 1 ml, cooled to 0° for 2 h. After the formed solid was filtered, and rinsed with an ice-cold ethanol/water solution (1:1, 2 mL), and dried.

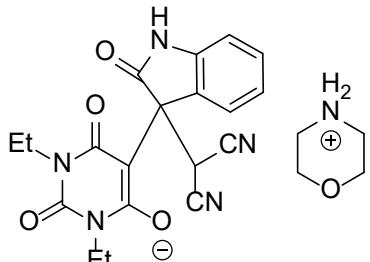

Characterization of synthesized compounds

Morpholin-4-ium 5-(3-dicyanomethyl-2-oxoindolin-3-yl)-1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-olate (3a).

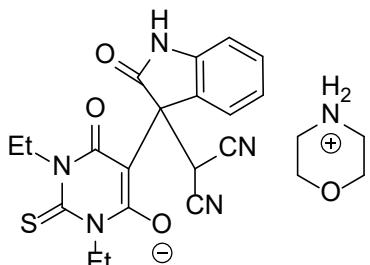

Yield 0.40 g (91%), mp: 147-149 °C. ^1H NMR (300 MHz, DMSO- d_6): δ 3.03 (s, 6H, 2 CH_3), 3.11 (t, $^3J = 4.8$ Hz, 4H, 2 OCH_2), 3.77 (t, $^3J = 4.8$ Hz, 4H, 2 CH_2NH_2^+), 6.76 (d, $^3J = 7.7$ Hz, 1H, CH Ar), 6.85 (t, $^3J = 7.6$ Hz, 1H, CH Ar), 6.92 (s, 1H, CH), 7.15 (t, $^3J = 7.6$ Hz, 1H, CH Ar), 7.32 (d, $^3J = 7.7$ Hz, 1H, CH Ar), 7.90-9.42 (br s, 2H, NH_2^+ exch.), 10.33 (s, 1H, NH) ppm. ^{13}C NMR (75 MHz, DMSO- d_6): δ 26.9 (2C), 28.9, 43.0 (2C), 52.7, 63.4 (2C), 82.3, 108.9, 113.3, 113.4, 121.3, 123.6, 128.4, 131.2, 142.6, 152.3, 161.7 (br, 2C), 176.9 ppm. IR (KBr) ν = 3175, 2976, 2868, 2507, 2256, 2201, 1713, 1577, 1433, 1106, 755 cm^{-1} . ESI-HRMS: found m/z 350.0900 [M – $\text{C}_4\text{H}_{10}\text{NO}$] $^+$; calculated for $\text{C}_{17}\text{H}_{12}\text{N}_5\text{O}_4$ 350.0895.

Complete assignment of signals to atoms for compound 3a

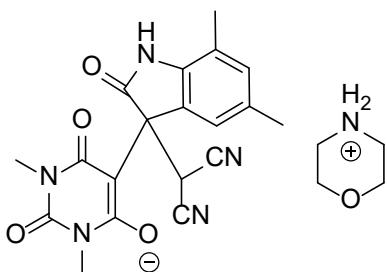
^1H NMR (400 MHz, DMSO- d_6) δ 10.34 (s, 1H, H^1), 8.61 (br s, 2H, NH_2^+), 7.30 (dd, $^3J = 7.5$ Hz, $^4J = 1.2$ Hz, 1H, H^4), 7.13 (td, $^3J = 7.5$ Hz, $^4J = 1.3$ Hz, 1H, H^6), 6.91 (s, 1H, 3-CH), 6.84 (td, $^3J = 7.5$ Hz, $^4J = 1.0$ Hz, 1H, H^5), 6.75 (d, $^3J = 7.7$ Hz, 1H, H^7), 3.80 – 3.70 (m, 4H, CH_2NH_2^+), 3.13 – 3.07 (m, 4H, OCH_2), 3.02 (s, 6H, 1'-CH₃, 3'-CH₃) ppm.


^{13}C NMR (101 MHz, DMSO- d_6) δ 176.9 (C²), 161.7 (2C, C^{4'}, C^{6'}), 152.2 (C^{2'}), 142.6 (C^{7a}), 131.2 (C^{3a}), 128.4 (C⁶), 123.6 (C⁴), 121.2 (C⁵), 113.4 (CN), 113.3 (CN), 108.9 (C⁷), 82.3 (C^{5'}), 63.4 (2C, CH₂O), 52.6 (C³), 43.0 (2C, CH₂NH₂⁺), 28.9 (3-CH), 26.9 (2C, N-CH₃) ppm.

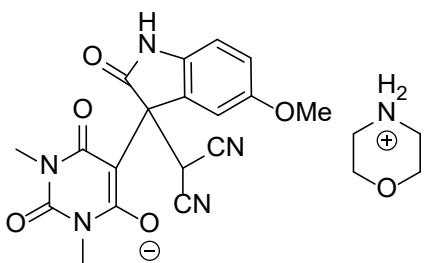
Morpholin-4-ium 5-(3-dicyanomethyl-2-oxoindolin-3-yl)-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-olate (3b).


Yield 0.33 g (80%), mp: 234-236 °C. ^1H NMR (300 MHz, DMSO- d_6): δ 3.00–3.18 (m, 4H, 2 OCH_2), 3.68–3.82 (m, 4H, 2 CH_2NH_2^+), 6.76 (d, $^3J = 7.5$ Hz, 1H, CH Ar), 6.88 (t, $^3J = 7.4$ Hz, 1H, CH Ar), 6.97 (s, 1H, CH), 7.15 (t, $^3J = 7.5$ Hz, 1H, CH Ar), 7.34 (d, $^3J = 7.4$ Hz, 1H, CH

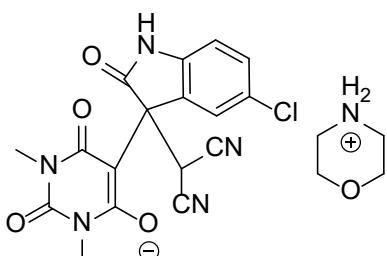
Ar), 9.31 (s, 2H, 2 NH _{barb.}), 10.38 (s, 1H, NH) ppm. ¹³C NMR (75 MHz, DMSO-*d*₆): δ 28.7, 43.0 (2C), 52.0, 63.5 (2C), 81.9, 108.9, 113.2, 113.4, 121.3 123.6, 128.5, 131.3, 142.4, 151.5, 164.1 (br, 2C), 176.8 ppm. IR (KBr) ν = 3305, 3234, 3178, 2974, 2194, 1714, 1645, 1617, 1474, 1311, 1111 cm⁻¹. ESI-HRMS: found *m/z* 322.0577 [M – C₄H₁₀NO]⁺; calculated for C₁₅H₈N₅O₄ 322.0582.


Morpholin-4-ium 5-(3-dicyanomethyl-2-oxoindolin-3-yl)-1,3-diethyl-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-olate (3c).

Yield 0.41 g (87%), mp: 138-140 °C. ¹H NMR (300 MHz, DMSO-*d*₆): δ 0.85-1.14 (m, 6H, 2 CH₃), 3.11 (t, ³J = 4.7 Hz, 4H, 2 OCH₂), 3.52–3.90 (m, 8H, 2 CH₂ + 2 CH₂NH₂⁺), 6.77 (d, ³J = 7.6 Hz, 1H, CH Ar), 6.86 (t, ³J = 7.5 Hz, 1H, CH Ar), 6.94 (s, 1H, CH), 7.15 (t, ³J = 7.5 Hz, 1H, CH Ar), 7.31 (d, ³J = 7.5 Hz, 1H, CH Ar), 8.01-9.30 (br s, 2H, NH₂⁺ exch.), 10.32 (s, 1H, NH) ppm. ¹³C NMR (75 MHz, DMSO-*d*₆): δ 13.8 (2C), 29.0, 34.3 (2C), 43.0 (2C), 52.7, 63.4 (2C), 82.4, 108.9, 113.3, 113.4, 121.2 123.6, 128.4, 131.2, 142.6, 152.4, 161.6 (br, 2C), 176.9 ppm. IR (KBr) ν = 3434, 2980, 2872, 2515, 2255, 2200, 1712, 1573, 1439, 1108, 754 cm⁻¹. ESI-HRMS: found *m/z* 378.1198 [M – C₄H₁₀NO]⁺; calculated for C₁₉H₁₆N₅O₄ 378.1208.

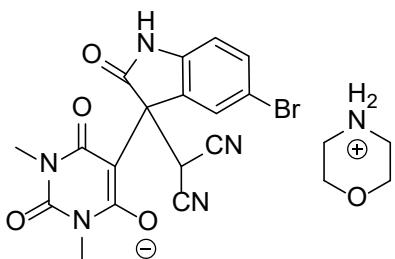

Morpholin-4-ium 5-(3-dicyanomethyl-2-oxoindolin-3-yl)-1,3-diethyl-6-oxo-2-thioxo-1,2,3,6-tetrahydropyrimidin-4-olate (3d).

Yield 0.40 g (83%), mp: 193-194 °C. ¹H NMR (300 MHz, DMSO-*d*₆): δ 1.01-1.22 (m, 6H, 2 CH₃), 3.11 (t, ³J = 4.7 Hz, 4H, 2 OCH₂), 3.77 (t, ³J = 4.7 Hz, 4H, 2 CH₂NH₂⁺), 4.20-4.51 (m, 4H, 2 CH₂), 6.77 (d, ³J = 7.4 Hz, 1H, CH Ar), 6.81 (s, 1H, CH), 6.88 (t, ³J = 7.4 Hz, 1H, CH Ar), 7.18 (t, ³J = 7.4 Hz, 1H, CH Ar), 7.31 (d, ³J = 7.4 Hz, 1H, CH Ar), 7.97-9.45 (br s, 2H, NH₂⁺ exch.), 10.40 (s, 1H, NH) ppm. ¹³C NMR (75 MHz, DMSO-*d*₆): δ 12.6 (2C), 29.0, 41.4 (2C), 42.9 (2C), 52.4, 63.3 (2C), 87.4, 109.0, 113.1, 113.2, 121.4 123.6, 128.7, 130.3, 142.8, 159.8 (br, 2C), 174.6, 176.4 ppm. IR (KBr) ν = 3165, 2982, 2893, 2504, 2253, 1702, 1632, 1564, 1419, 1269, 1108 cm⁻¹. ESI-HRMS: found *m/z* 394.0976 [M – C₄H₁₀NO]⁺; calculated for C₁₉H₁₆N₅O₃S 394.0979.

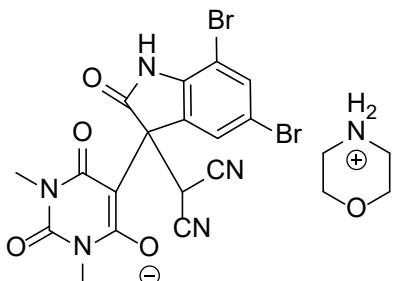

Morpholin-4-ium 5-(3-dicyanomethyl-5,7-dimethyl-2-oxoindolin-3-yl)-1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-olate (3e).

Yield 0.44 g (98%), mp: 143-145 °C. ^1H NMR (300 MHz, DMSO-*d*₆): δ 2.17 (s, 6H, 2 CH₃ isatin), 3.04 (s, 6H, 2 CH₃), 3.11 (t, 3J = 4.9 Hz, 4H, 2 OCH₂), 3.76 (t, 3J = 4.9 Hz, 4H, 2 CH₂NH₂⁺), 6.78 (s, 1H, CH Ar), 6.89 (s, 1H, CH), 6.96 (s, 1H, CH Ar), 7.82-9.44 (br s, 2H, NH₂⁺ exch.), 10.30 (s, 1H, NH) ppm. ^{13}C NMR (75 MHz, DMSO-*d*₆): δ 16.4, 20.6, 26.9 (2C), 29.1, 43.0 (2C), 53.0, 63.4 (2C), 82.5, 113.4, 113.5, 117.7, 121.3, 129.9, 130.3, 130.9, 138.8, 152.3, 161.3 (br, 2C), 177.3 ppm. IR (KBr) ν = 3465, 3186, 2970, 2863, 2502, 2255, 1716, 1589, 1430, 1107, 873 cm⁻¹. ESI-HRMS: found *m/z* 378.1198 [M – C₄H₁₀NO]⁺; calculated for C₁₉H₁₆N₅O₄ 378.1208.

Morpholin-4-ium 5-(3-dicyanomethyl-5-methoxy-2-oxoindolin-3-yl)-1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-olate (3f).


Yield 0.40 g (85%), mp: 193-194 °C. ^1H NMR (300 MHz, DMSO-*d*₆): δ 3.04 (s, 6H, 2 CH₃), 3.12 (t, 3J = 4.7 Hz, 4H, 2 OCH₂), 3.66 (s, 2H, OCH₃), 3.77 (t, 3J = 4.7 Hz, 4H, 2 CH₂NH₂⁺), 6.63-6.79 (m, 2H, 2 CH Ar), 6.90 (s, 1H, CH), 6.94 (d, 4J = 1.7 Hz, 1H, CH Ar), 8.81 (br s, 2H, NH₂⁺), 10.17 (s, 1H, NH) ppm. ^{13}C NMR (75 MHz, DMSO-*d*₆): δ 26.9 (2C), 29.0, 43.0 (2C), 53.1, 55.3, 63.4 (2C), 82.3, 109.2, 110.6, 113.0, 113.3, 113.4, 132.4, 136.0, 152.3, 154.5, 161.9 (br, 2C), 176.8 ppm. IR (KBr) ν = 3200, 2989, 2532, 2255, 2225, 1703, 1574, 1444, 1208, 1104, 872 cm⁻¹. ESI-HRMS: found *m/z* 380.1002 [M – C₄H₁₀NO]⁺; calculated for C₁₈H₁₄N₅O₅ 380.1000.

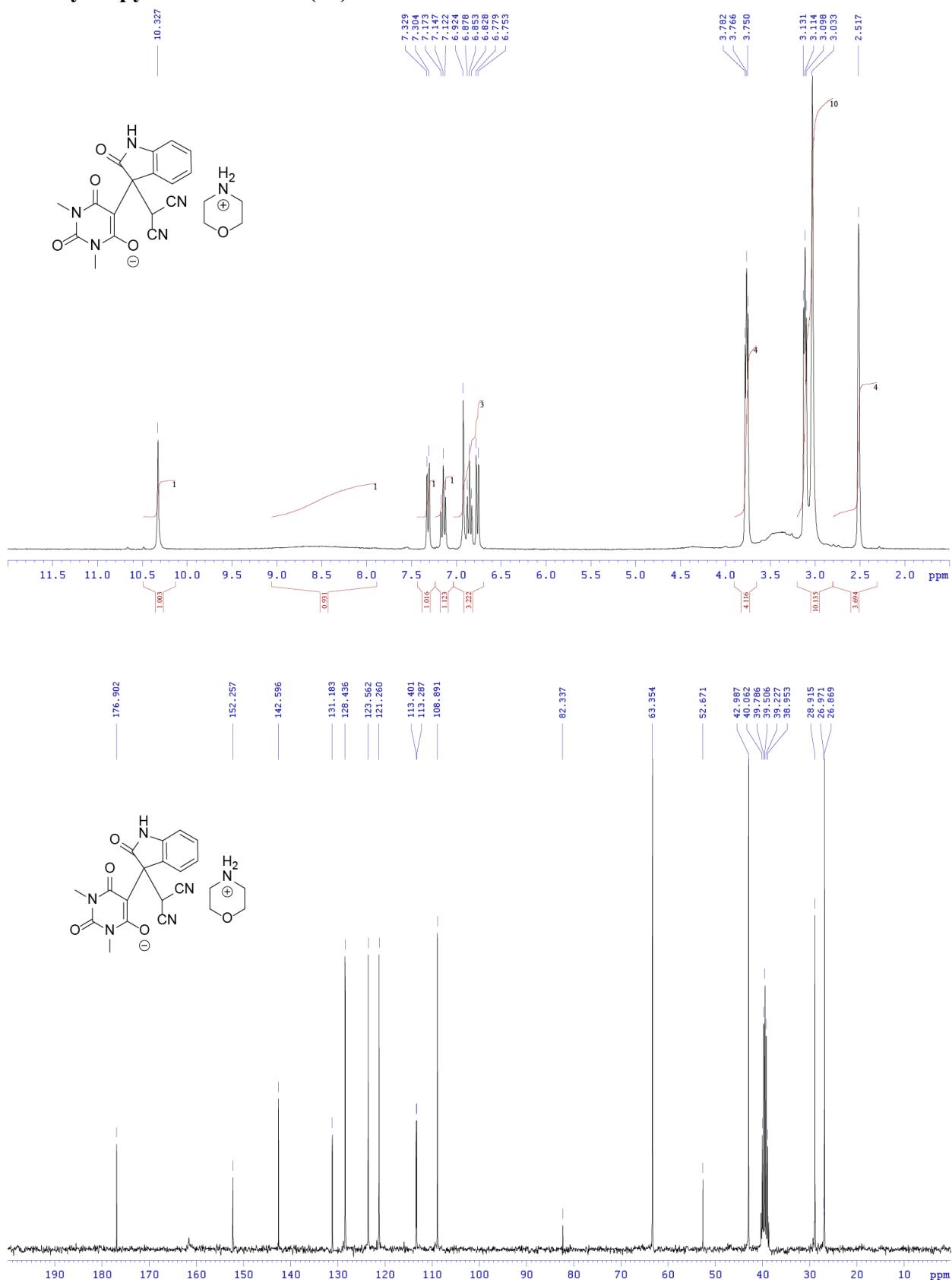
Morpholin-4-ium 5-(5-chloro-3-dicyanomethyl-2-oxoindolin-3-yl)-1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-olate (3g).


Yield 0.43 g (91%), mp: 142-144 °C. ^1H NMR (300 MHz, DMSO-*d*₆): δ 3.04 (s, 6H, 2 CH₃), 3.11 (t, 3J = 4.8 Hz, 4H, 2 OCH₂), 3.76 (t, 3J = 4.8 Hz, 4H, 2 CH₂NH₂⁺), 6.79 (d, 3J = 8.2 Hz, 1H, 1 CH Ar), 6.92 (s, 1H, CH), 7.21 (dd, 3J = 8.2 Hz, 4J = 2.0 Hz, 1H, CH Ar), 7.31 (d, 4J = 2.0 Hz, 1H, 1 CH Ar), 8.03-9.47 (br s, 2H, NH₂⁺), 10.51 (s, 1H, NH) ppm. ^{13}C NMR (75 MHz, DMSO-*d*₆): δ 26.9 (2C), 28.8, 43.0 (2C), 52.8, 63.4 (2C), 82.0, 110.4, 113.2 (2C), 123.5, 124.9, 128.4, 133.1, 141.6, 152.2, 161.8 (br, 2C), 176.6 ppm. IR (KBr) ν = 3434, 2976, 2863, 2509, 2256, 2200, 1717, 1574, 1434, 1107, 774 cm⁻¹. ESI-HRMS: found *m/z* 384.0496 [³⁵Cl, M –

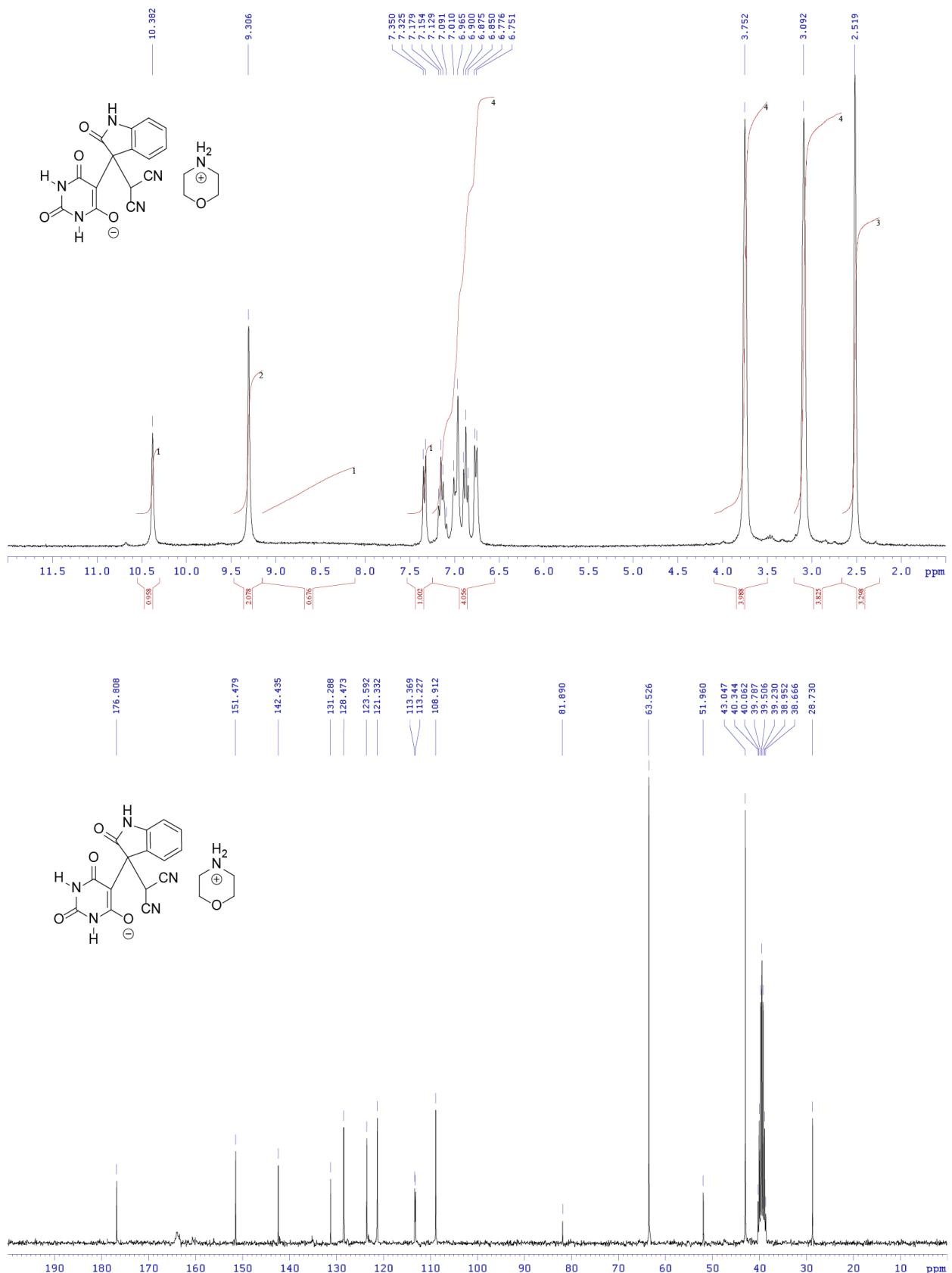
$\text{C}_4\text{H}_{10}\text{NO}]^+$, 386.0473 [^{37}Cl , $\text{M} - \text{C}_4\text{H}_{10}\text{NO}]^+$; calculated for $\text{C}_{17}\text{H}_{11}\text{ClN}_5\text{O}_4$ 384.0505 (^{35}Cl), 386.0477 (^{37}Cl).

Morpholin-4-ium 5-(5-bromo-3-dicyanomethyl-2-oxoindolin-3-yl)-1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-olate (3h).

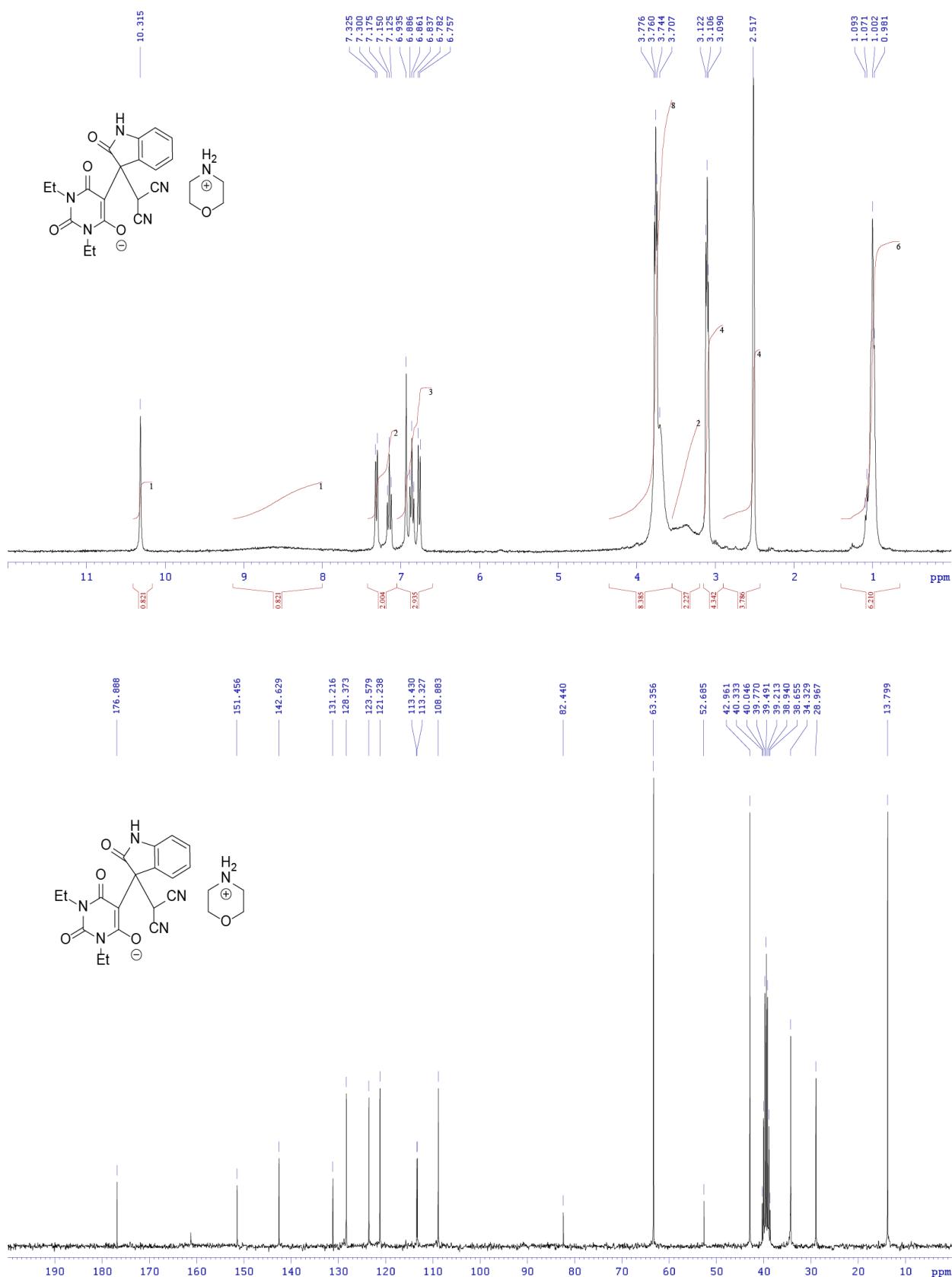
Yield 0.48 g (92%), mp: 160-162 °C. ^1H NMR (300 MHz, $\text{DMSO}-d_6$): δ 3.04 (s, 6H, 2 CH_3), 3.00-3.20 (m, 4H, 2 OCH_2), 3.67-3.84 (m, 4H, 2 CH_2NH_2^+), 6.75 (d, ^1H , 1H Ar), 6.91 (s, 1H, CH), 7.34 (d, $^3\text{J} = 7.9$ Hz, 1H, CH Ar), 7.42 (s, 1H, 1 CH Ar), 7.79-9.30 (br s, 2H, NH_2^+ exch.), 10.52 (s, 1H, NH) ppm. ^{13}C NMR (75 MHz, $\text{DMSO}-d_6$): δ 26.9 (2C), 28.8, 43.1 (2C), 52.8, 63.5 (2C), 82.0, 110.9, 112.5, 113.2 (2C), 126.2, 131.2, 133.5, 142.0, 152.2, 161.7 (br, 2C), 176.4 ppm. IR (KBr) ν = 3435, 2975, 2863, 2504, 2256, 2202, 1720, 1575, 1433, 1107, 773 cm^{-1} . ESI-HRMS: found m/z 427.9984 [^{79}Br , $\text{M} - \text{C}_4\text{H}_{10}\text{NO}]^+$, 429.9972 [^{81}Br , $\text{M} - \text{C}_4\text{H}_{10}\text{NO}]^+$; calculated for $\text{C}_{17}\text{H}_{11}\text{BrN}_5\text{O}_4$ 428.0000 (^{79}Br), 429.9980 (^{81}Br).

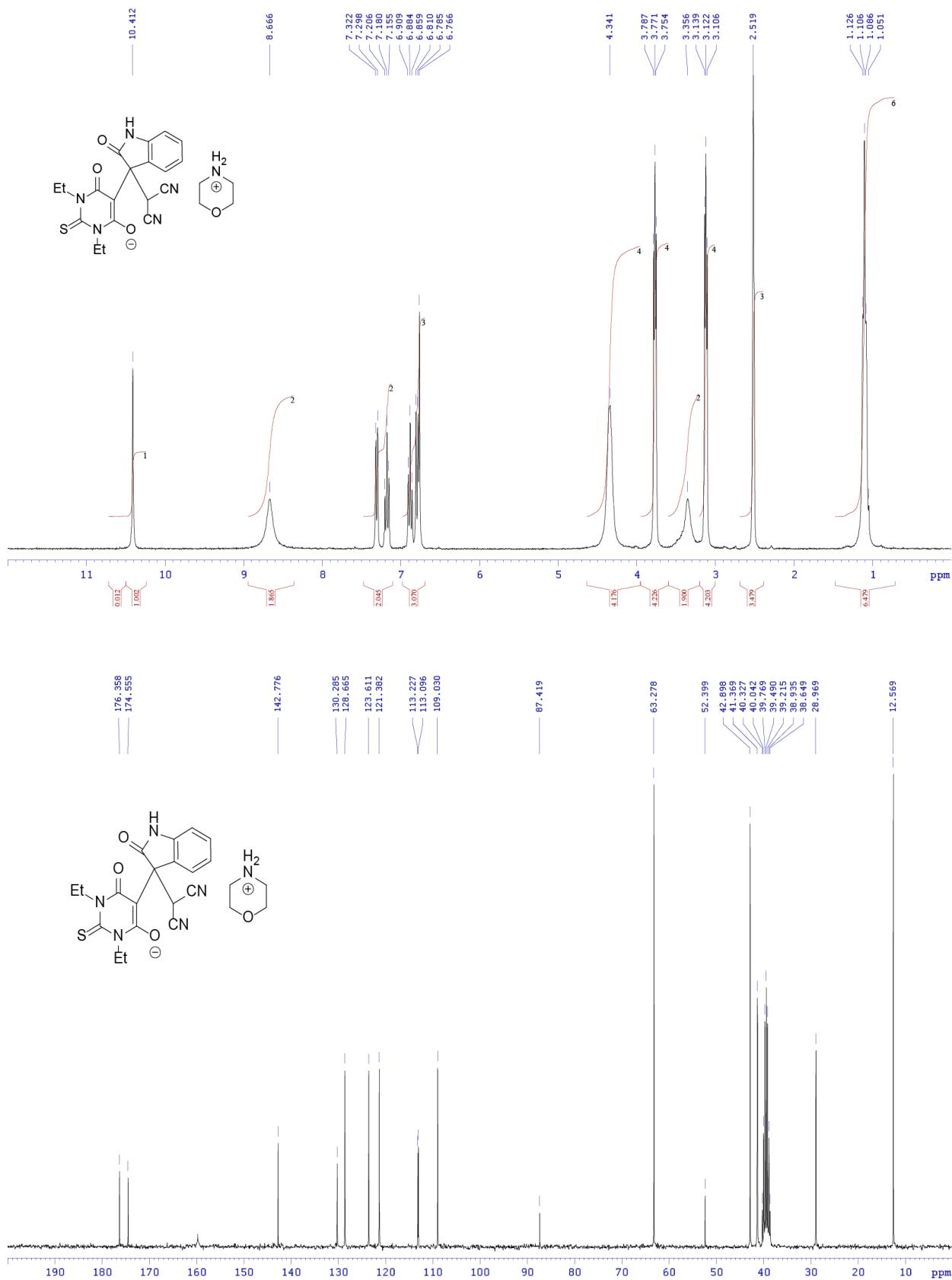


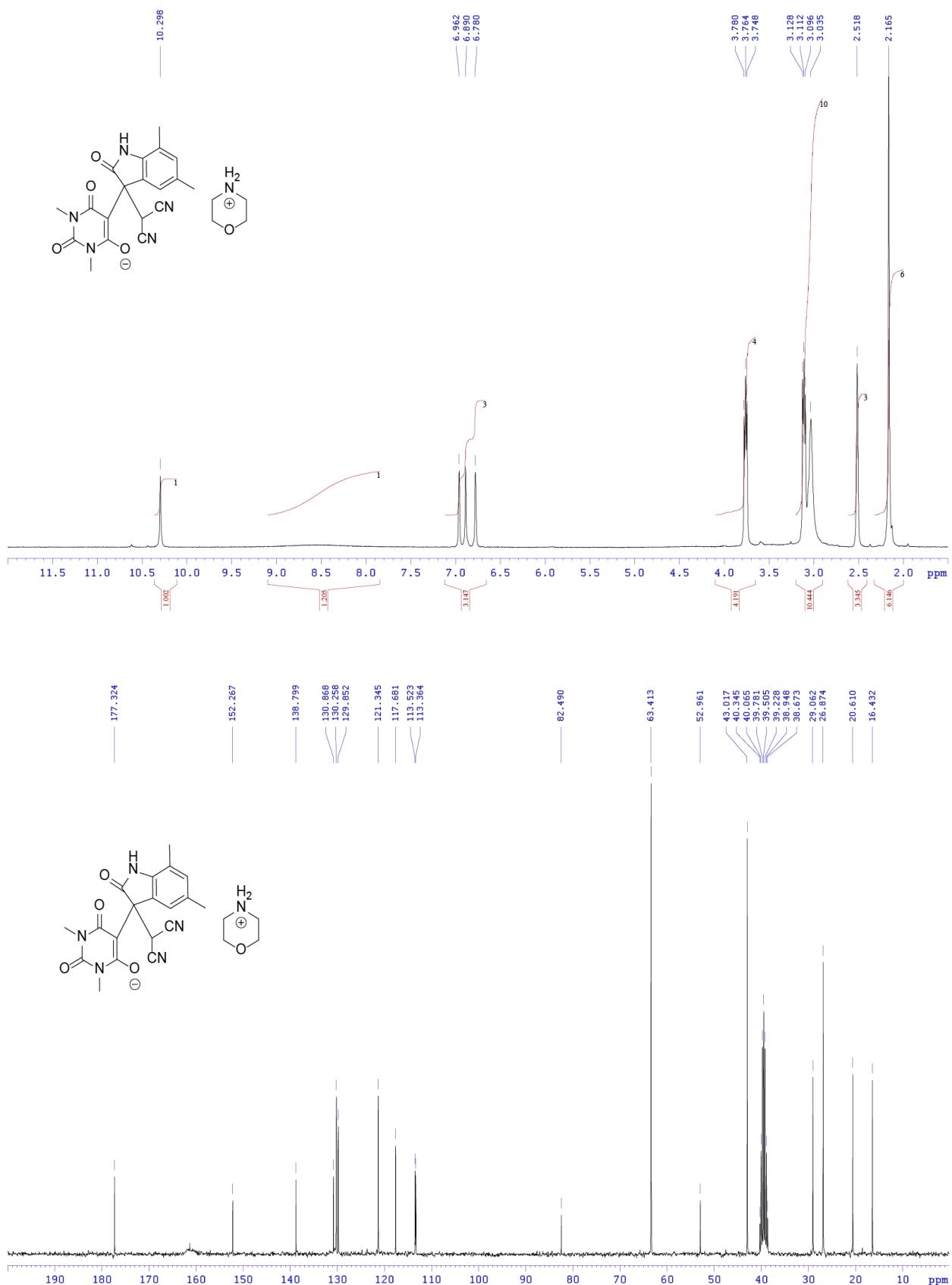
Morpholin-4-ium 5-(5,7-dibromo-3-dicyanomethyl-2-oxoindolin-3-yl)-1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-olate (3i).

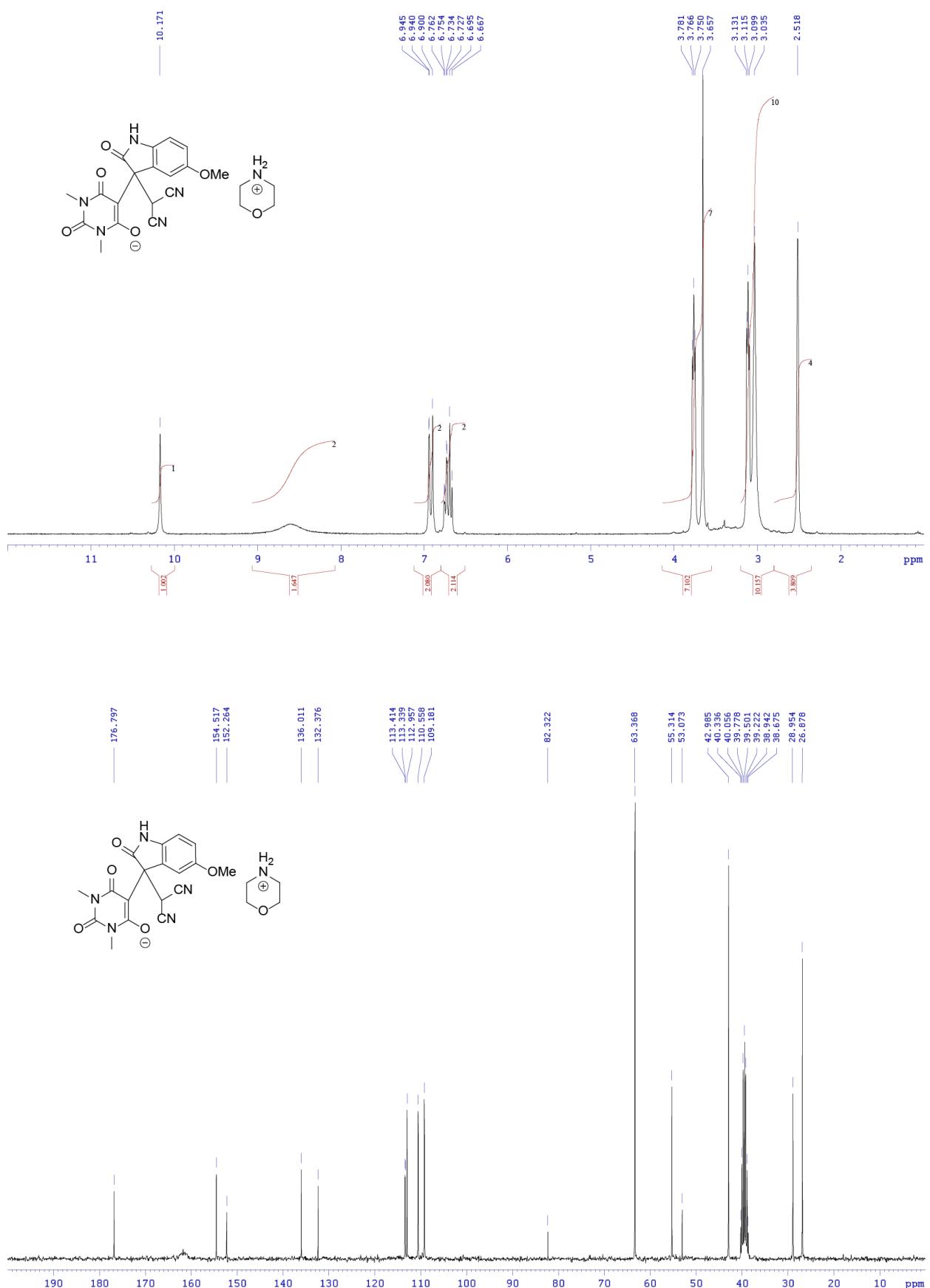

Yield 0.56 g (95%), mp: > 300°C. ^1H NMR (300 MHz, $\text{DMSO}-d_6$): δ 3.04 (s, 6H, 2 CH_3), 3.12 (t, $^3\text{J} = 4.8$ Hz, 4H, 2 OCH_2), 3.77 (t, $^3\text{J} = 4.8$ Hz, 4H, 2 CH_2NH_2^+), 6.90 (s, 1H, CH), 7.42 (d, $^4\text{J} = 1.6$ Hz, 1H, CH Ar), 7.62 (d, $^4\text{J} = 1.6$ Hz, 1H, CH Ar), 8.20-9.18 (br s, 2H, NH_2^+), 10.55-11.29 (br s, 1H, NH) ppm. ^{13}C NMR (75 MHz, $\text{DMSO}-d_6$): δ 26.9 (2C), 28.8, 43.0 (2C), 53.8, 63.4 (2C), 81.8, 102.1, 112.9, 113.0 (2C), 125.4, 133.2, 134.4, 141.7, 152.2, 161.4 (br, 2C), 176.2 ppm. IR (KBr) ν = 3435, 2970, 2863, 2501, 2256, 2200, 1728, 1572, 1436, 1107, 771 cm^{-1} . ESI-HRMS: found m/z 505.9093 [^{79}Br , ^{79}Br , $\text{M} - \text{C}_4\text{H}_{10}\text{NO}]^+$, 507.9075 [^{79}Br , ^{81}Br , $\text{M} - \text{C}_4\text{H}_{10}\text{NO}]^+$, 509.9060 [^{81}Br , ^{81}Br , $\text{M} - \text{C}_4\text{H}_{10}\text{NO}]^+$; calculated for $\text{C}_{17}\text{H}_{10}\text{Br}_2\text{N}_5\text{O}_4$ 505.9105 (^{79}Br , ^{79}Br), 507.9086 (^{79}Br , ^{81}Br), 509.9065 (^{81}Br , ^{81}Br).

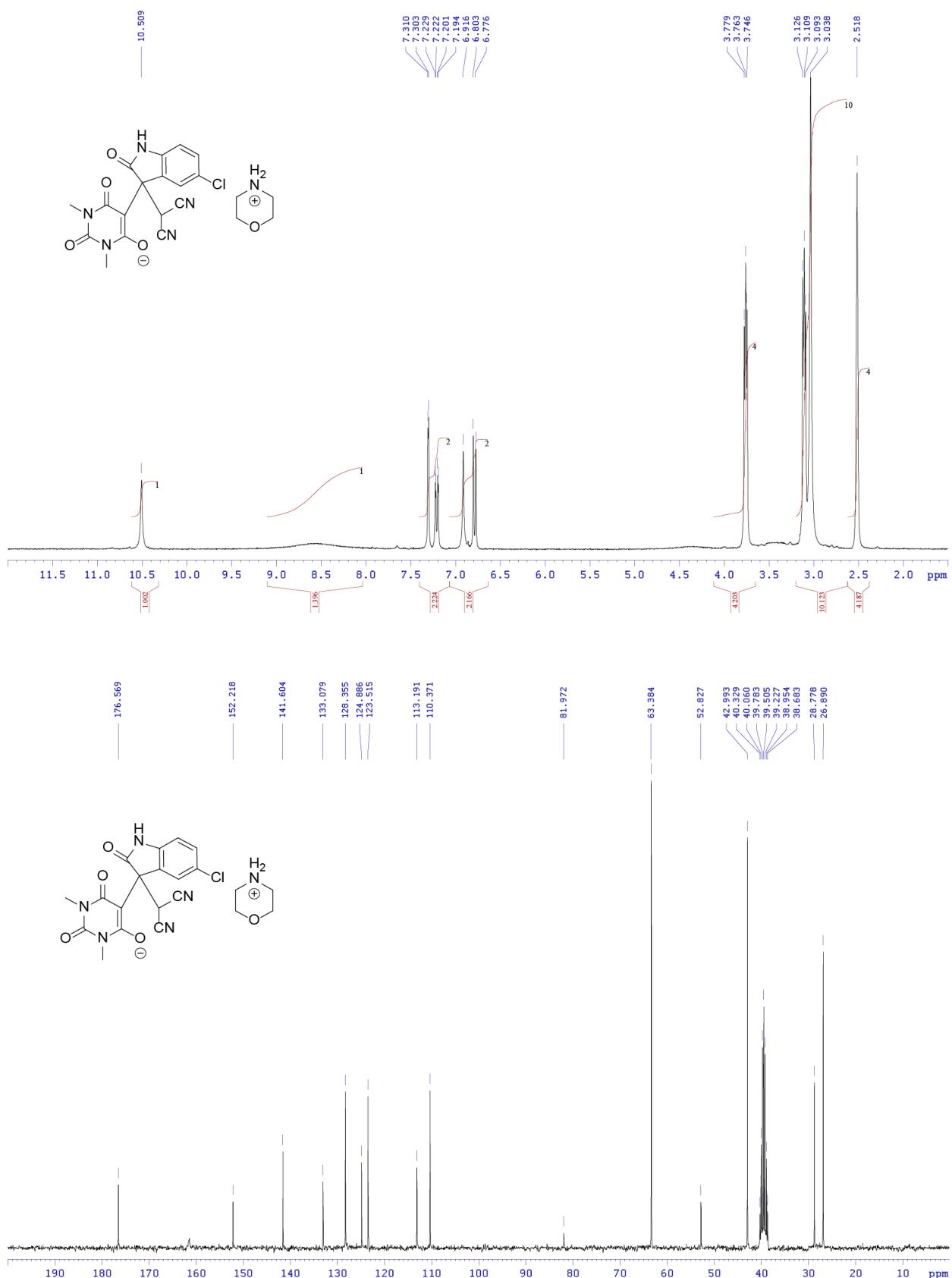
¹H and ¹³C NMR spectra

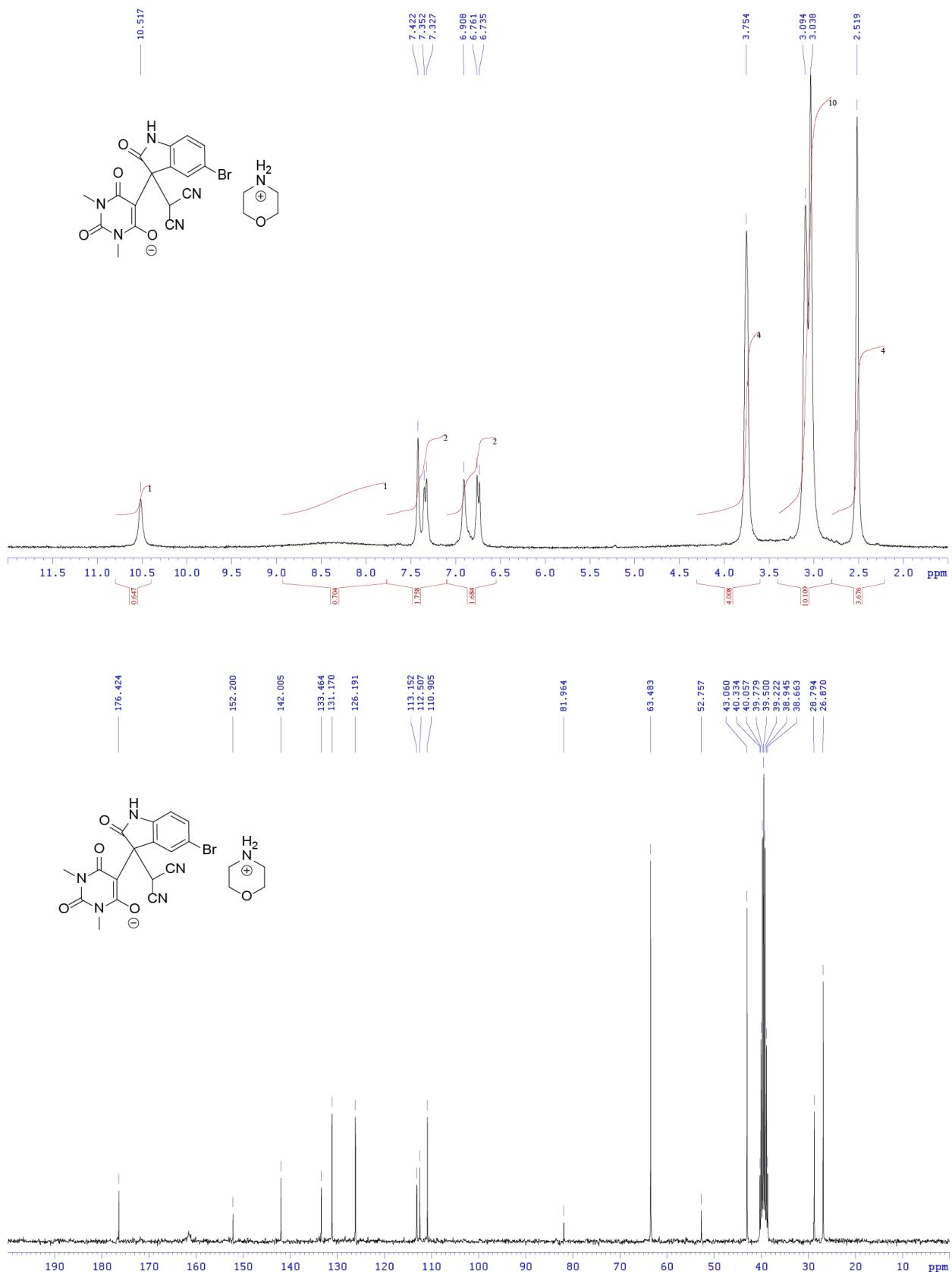

Morpholin-4-ium 5-(3-dicyanomethyl-2-oxoindolin-3-yl)-1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-olate (3a).

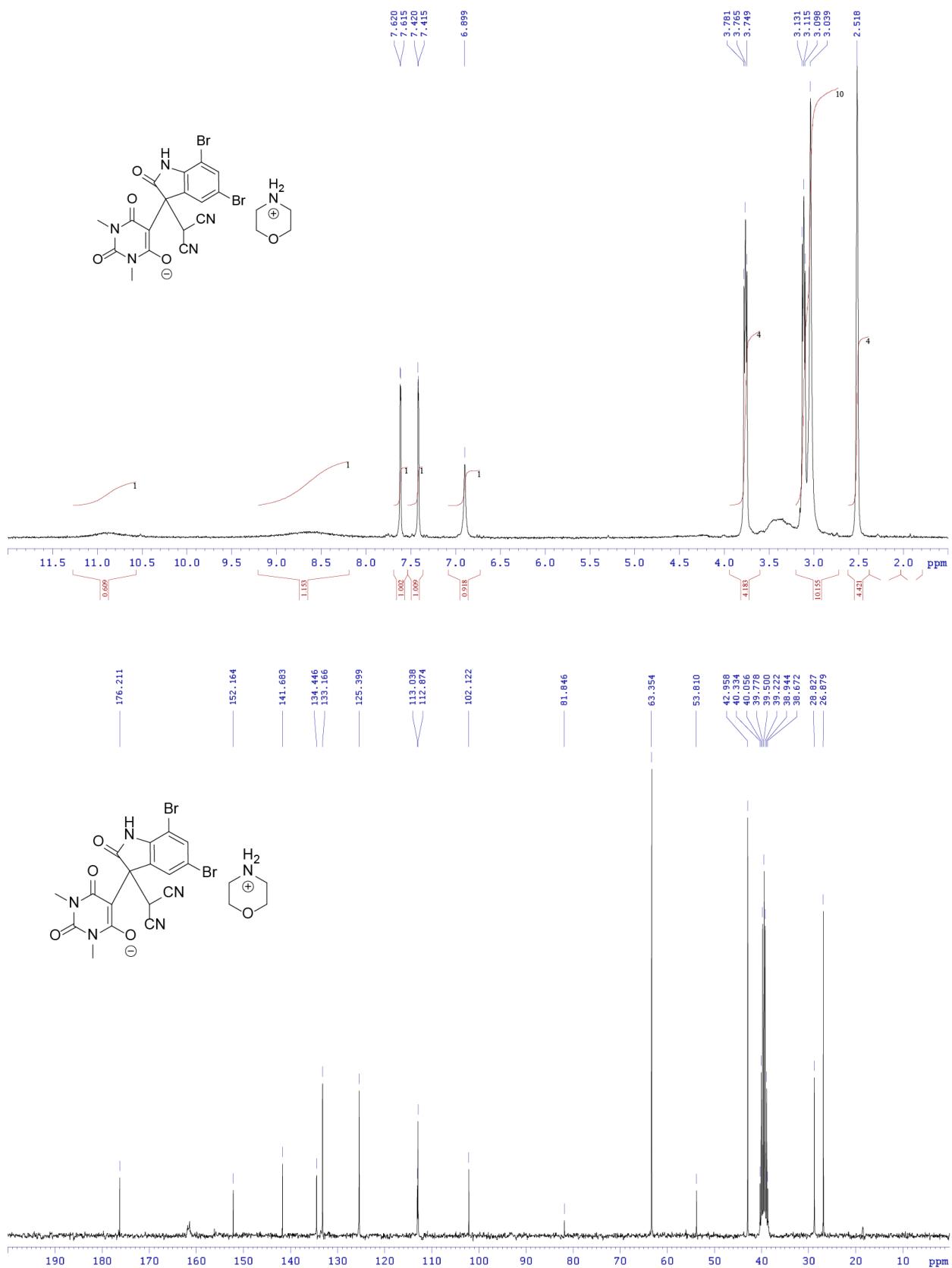

Morpholin-4-ium 5-(3-dicyanomethyl-2-oxoindolin-3-yl)-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-olate (3b).

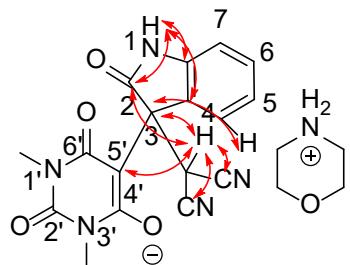

Morpholin-4-ium 5-(3-dicyanomethyl-2-oxoindolin-3-yl)-1,3-diethyl-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-olate (3c).


Morpholin-4-ium 5-(3-dicyanomethyl-2-oxoindolin-3-yl)-1,3-diethyl-6-oxo-2-thioxo-1,2,3,6-tetrahydropyrimidin-4-olate (3d).


Morpholin-4-ium 5-(3-dicyanomethyl-5,7-dimethyl-2-oxoindolin-3-yl)-1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-olate (3e).


Morpholin-4-ium 5-(3-dicyanomethyl-5-methoxy-2-oxoindolin-3-yl)-1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-olate (3f).

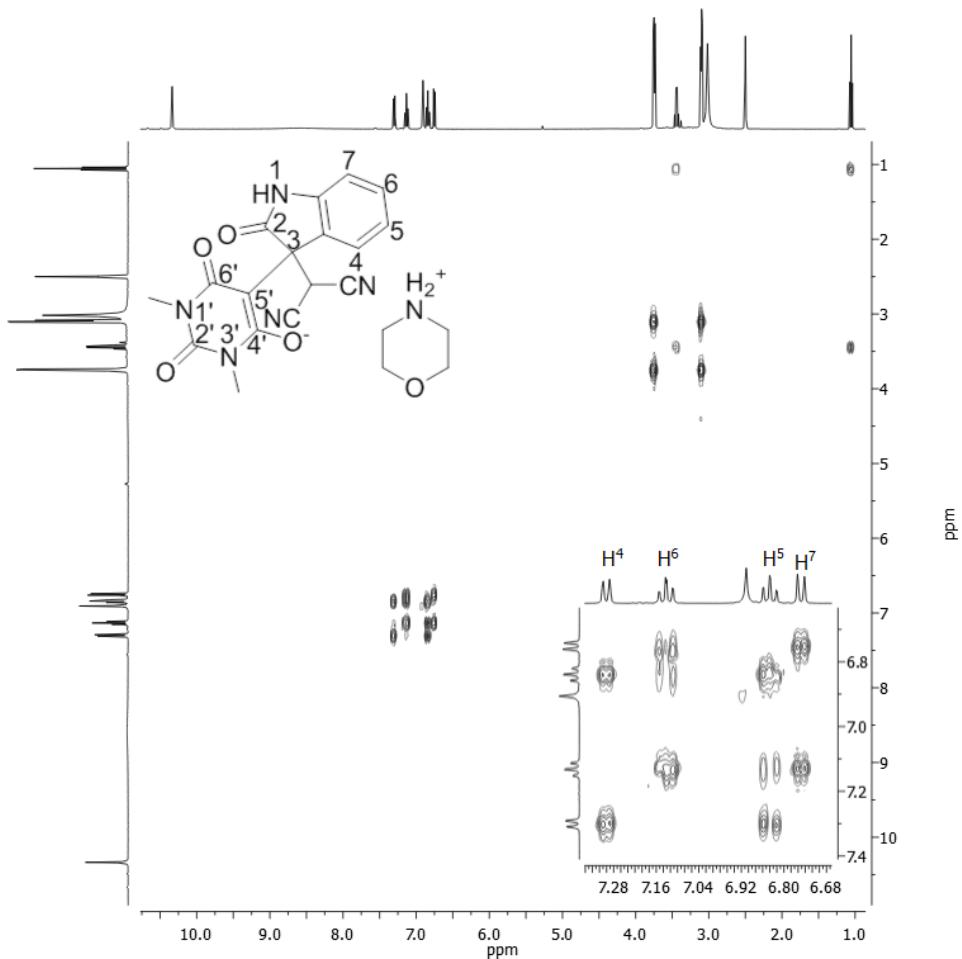

Morpholin-4-ium 5-(5-chloro-3-dicyanomethyl-2-oxoindolin-3-yl)-1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-olate (3g).


Morpholin-4-ium 5-(5-bromo-3-dicyanomethyl-2-oxoindolin-3-yl)-1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-olate (3h).

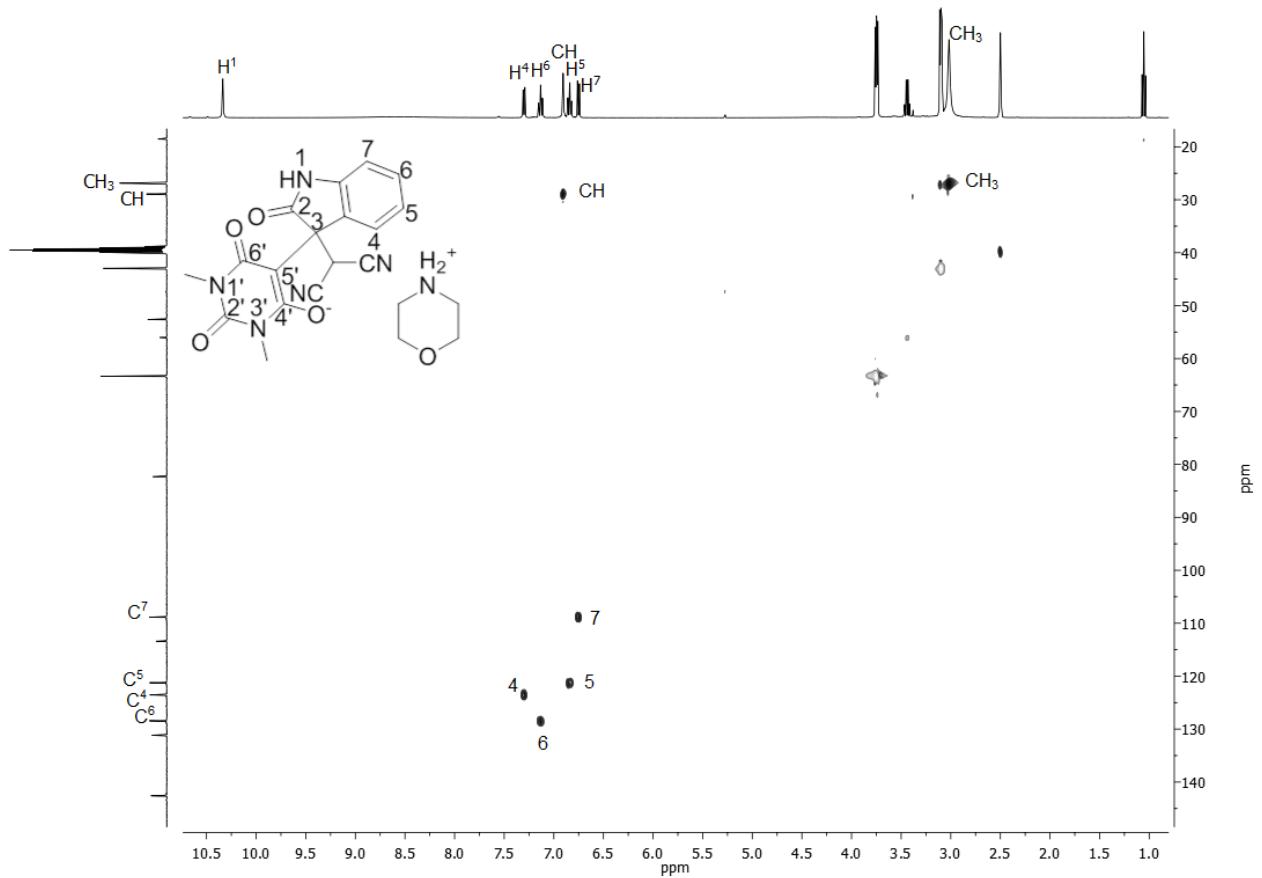
Morpholin-4-ium 5-(5,7-dibromo-3-dicyanomethyl-2-oxoindolin-3-yl)-1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-olate (3i).

2D NMR spectra and description for compound 3a

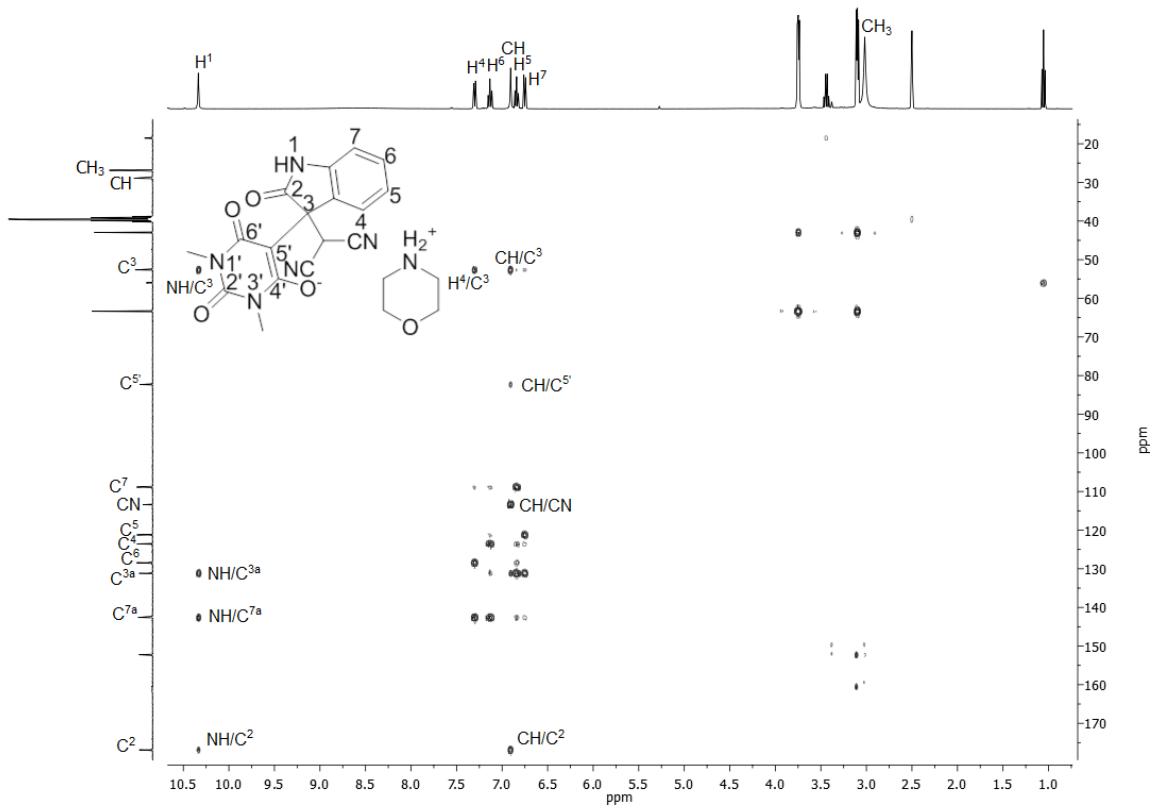
Figure S1. The structure and numbering of the compound 3a. Key ¹H-¹³C-HMBC spectrum correlations established by NMR are shown by arrows.


Complete assignment of signals to atoms for compound 3a:

¹H NMR (400 MHz, DMSO-*d*₆) δ 10.34 (s, 1H, H¹), 8.61 (br s, 2H, NH₂⁺), 7.30 (dd, ³J = 7.5 Hz, ⁴J = 1.2 Hz, 1H, H⁴), 7.13 (td, ³J = 7.5 Hz, ⁴J = 1.3 Hz, 1H, H⁶), 6.91 (s, 1H, 3-CH), 6.84 (td, ³J = 7.5 Hz, ⁴J = 1.0 Hz, 1H, H⁵), 6.75 (d, ³J = 7.7 Hz, 1H, H⁷), 3.80 – 3.70 (m, 4H, CH₂NH₂⁺), 3.13 – 3.07 (m, 4H, OCH₂), 3.02 (s, 6H, 1'-CH₃, 3'-CH₃) ppm.


¹³C NMR (101 MHz, DMSO-*d*₆) δ 176.9 (C²), 161.7 (2C, C⁴, C⁶), 152.2 (C^{2'}), 142.6 (C^{7a}), 131.2 (C^{3a}), 128.4 (C⁶), 123.6 (C⁴), 121.2 (C⁵), 113.4 (CN), 113.3 (CN), 108.9 (C⁷), 82.3 (C^{5'}), 63.4 (2C, CH₂O), 52.6 (C³), 43.0 (2C, CH₂NH₂⁺), 28.9 (3-CH), 26.9 (2C, N-CH₃) ppm.

The structure of compound 3a was confirmed by NMR spectroscopy. The full assignment was carried out using 2D NMR experiments such as ¹H-¹H COSY, ¹H-¹³C HSQC, and ¹H-¹³C HMBC. The proton spectrum showed two broadened signals from the compound, which meant the presence of dynamics in the sample. Morpholinium NH₂ was in exchange with water, so both proton signals had a large width. Also, there was a broad singlet at 3.02 ppm from N-CH₃ groups due to keto-enol tautomerism. In the carbon NMR spectrum, C⁴ and C⁶ have the same chemical shifts and appear as a broad signal because of tautomerism too. It is noteworthy that the CH proton from the malononitrile moiety appeared at low field (6.91 ppm) and the assignment was made on the base of the HSQC cross-peak with the high field carbon signal (at 28.9 ppm).


^1H - ^1H COSY NMR spectrum.

^1H - ^1H COSY NMR spectrum.

^1H - ^{13}C HMBC NMR spectrum.

