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Coinage metal [i.e. Cui, Agi, Aui] complexes have recently 
received much research interest by virtue of their applications in 
materials science,1–4 catalysis,5–7 and medicinal chemistry.8,9 
Furthermore, these compounds possess remarkable photophysical 
properties including thermally activated delayed fluorescence 
(TADF)10,11 and efficient room-temperature phospho
rescence,12–14 which promise their as energy-efficient light-
emitting devices (PhOLED, pc-LED, LEECs)1,15–17 and stimuli-
responsive materials.18–21 

One of the most intriguing class of luminescent coinage 
metal(i) complexes is represented by so-called ‘scorpionates’ (in 
which a tridentate ligand binds metal in fac-manner). Generally, 
N,N',N''-tripodal ligands, such as tris(pyridyl)methane22–24 or 
tris(pyrazolyl)methane and -borate,25,26 are used for design of 
Cui and Agi scorpionates. At the same time, other promising 
tripodal ligands, e.g. tris(pyridyl)pnictine chalcogenides, are less 
investigated in this regard.27–29

Herein, we have synthesized a sterically hindered tris(6-
methyl-2-pyridyl)phosphine oxide (L) and utilized it as a 
N,N',N''-tripodal ligand for assembly of Cui and Agi scorpionate-

like complexes. The structural and emission properties of the 
reported compounds are discussed.

We have found that the reaction of [Cu(MeCN)4]PF6 or 
AgClO4 with 1 equiv. of L readily occurs in MeCN solution at 
room temperature to afford scorpionate complexes 1 and 2 in 81 
and 74% isolated yields, respectively (Scheme 1). The complexes 
obtained are air and moisture stable powders, well-soluble in 
MeCN, and marginally soluble in CH2Cl2. The powder X-ray 
diffractometry (XRD) and microanalysis data prove a good 
phase purity of 1 and 2 (Figures S1 and S2; for details, see 
Online Supplementary Materials). Their FTIR spectra correlate 
well with single-crystal XRD and show vibrations from the 
coordinated phosphine oxide ligands  (nC=C = 1488–1447 cm–1, 
nC=N = 1590–1587 cm–1, and nP=O = 1229–1222 cm–1) and 
MeCN ancillary co-ligands (nCºN = 2273 and 2284 cm−1). In 
addition, specific bands of  the  counterions are observed at 
nP–F = 843 cm−1 and nCl–O = 1092 cm−1 (Figures S3 and S4). 

Despite the fact that complexes 1 and 2 crystallize in different 
space groups (C2/m and P1

–
, respectively),†  they have quite 

similar structures (Figure 1). Their cationic parts consist of one 
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The interaction of tris(6-methyl-2-pyridyl)phosphine oxide 
(L) with equimolar amounts of [Cu(MeCN)4]PF6 or AgClO4 
in acetonitrile produces scorpionate-like complexes 
[M(L)(MeCN)]X (M = Cu and Ag; X = PF6

– and ClO4
–). At 

ambient temperature, these compounds exhibit orange 
(lllmax = 608 nm)  or turquoise (lllmax = 490 nm) photo
luminescence with a quantum yield up to 16% and lifetimes 
of microsecond order. 

†	 Crystal data for 1. C20H21CuF6N4OP2 (M = 572.89), monoclinic, space 
group C2/m,  a = 17.9479(13), b = 14.5811(8) and c = 8.8660(6) Å, 
b = 92.212(3)°, V = 2318.5(3) Å3, Z = 4, T = 296 K, 
m(MoKa) = 1.150 mm–1, Dcalc = 1.641 g cm–3. Total of 8084 reflections 
were measured and 2146 independent reflections (Rint = 0.051) were

used in the further refinement. The refinement converged to wR2 = 0.2114 
and GOF = 1.022 for all independent reflections [R1 = 0.0695 was 
calculated against F for 1761 observed reflections with I > 2s(I )]. 
	 Crystal data for 2. C20H21AgClN4O5P (M = 571.70), triclinic, 
space group P1

– 
, a = 8.7456(6), b = 11.0203(9) and c = 11.9021(10) Å,
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Cui or Agi ion, which are coordinated by a phosphine oxide 
ligand in a N,N',N''-tripodal manner. The acetonitrile ancillary 
ligand completes distorted tetrahedral (t4 = 0.84 for 1) or ‘see-
saw’ (t4 = 0.74 for 2) arrangement of the metal.30 The distances 
Cu–N (av. 2.09 Å) and Ag–N (av. 2.31 Å) in 1 and 2 are 
comparable to the published values.25,28,29 In the crystal of 1, PF6

– 
anions are localized between cationic parts and associated with 
them via CPy–H···F (2.412 Å) and CMeCN–H···F (2.391 and 
2.426 Å). Additionally, molecules of 1 are weakly interconnected 
by p–p stacking interactions (Cg···Cg ~ 3.815 Å) and CPy–H···O 
(2.544 Å) van der Waals contacts. The packing of 2 contains 
CPy–H···OL (2.461 and 2.698 Å), CMeCN–H···OClO4 (2.448 Å), 
and CPy–H···CPy (2.893 Å) intermolecular contacts. Similar to 1, 
p–p stacking interactions are observed in crystals of 2 with the 
mean centroid–centroid distance of 3.798 Å.

The electronic structures in compounds 1 and 2 have been 
theoretically investigated at a PBE0/def2TZVP level (Figures S5 
and S6). The highest occupied molecular orbital (HOMO) and 
near-HOMOs (HOMO−3 to HOMO−1) of 1 are primarily 
occupied by the d-orbitals of the Cu atom, while the lowest 
unoccupied molecular orbitals (LUMO to LUMO+3) consist of 
p-orbitals on the pyridine rings (Figure S5). Notably, that the 
HOMO and HOMO−1 of 2 are contributed by d-orbitals of the Ag 
atom and p-orbitals localized on the pyridine rings. Whereas, the 

HOMO−2 and HOMO−3, as well as LUMO and near-LUMOs, 
are exclusively presented by pyridine p-orbitals (Figure S6). The 
orbitals on MeCN co-ligands make almost no contribution to the 
frontier orbitals of complexes 1 and 2. Thus, the low-energy 
excited states of 1 and 2 should have a (metal + ligand)-to-ligand 
charge transfer character, i.e., (M + L)LCT.

We have also investigated the luminescent properties of 1 and 
2 in the solid state. Upon UV illumination at ambient temperature, 
both complexes exhibit moderate orange (1) or turquoise (2) 
luminescence, respectively. The emission spectra of 1 and 2 
display broad bands maximized at 608 and 490 nm, respectively 
(Figure 2). Note that the emission maxima are independent of 
the excitation wavelength. The emission lifetimes of 5.5 and 
11.2 µs for 1 and 2 at 298 K suggest that the observed 
luminescence originated from phosphorescence or TADF. The 
photoluminescence quantum yields (298 K) for 1 and 2 are 16% 
and 6%, respectively. Considering these facts and the results of 
our DFT calculations, the emission can probably ascribed to 
phosphorescence or TADF of (M + L)LCT, which is often 
observed for Cui and Agi complexes.1,2,10–12,28,29

In conclusion, a pair of new scorpionate-like complexes 
[M(L)(MeCN)]X (M = Cu and Ag; X = PF6

– and ClO4
–) based  

on tris(6-methyl-2-pyridyl)phosphine oxide (L) has been 
synthesized. At ambient temperature, these complexes 
demonstrate bright orange (M = Cu; X = PF6

–) or turquoise 
(M = Ag; X = ClO4

–) solid-state photoluminescence. The results 
obtained provide a new understanding of coordination chemistry 
of N,N',N''-tripodal ligands, and also contribute to photophysics 
of coinage metal(i) complexes. 
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Figure  1  X-ray derived structures of (a) 1 and (b) 2. The pyridine H atoms 
and counterions are not displayed. Selected interatomic distances (Å) and 
angles (°) for 1: Cu–N(1) 2.120(4), Cu–N(1') 2.120(4), Cu–N(2) 2.029(7), 
Cu–N(3) 2.091(5), N(1)–Cu–N(1') 97.6(2), N(2)–Cu–N(1' ) 118.74(15), 
N(3)–Cu–N(1' ) 96.77(15), N(3)–Cu–N(1) 96.77(15), N(2)–Cu–N(1) 
118.74(15), N(2)–Cu–N(3) 122.8(3). Symmetry code: (') x, 1 – y, z. Selected 
interatomic distances (Å) and angles (°) for 2: Ag–N(1) 2.166(3), Ag–N(2) 
2.331(2), Ag–N(3) 2.379(2), Ag–N(4) 2.350(2), N(3)–Ag–N(4) 128.06(10), 
N(1)–Ag–N(4) 127.04(10), N(2)–Ag–N(4) 122.61(11), N(1)–Ag–N(3) 
89.54(8), N(2)–Ag–N(3) 89.09(8), N(1)–Ag–N(2) 88.40(8).
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Figure  2  Emission and excitation spectra of solids (a) 1 and (b) 2 at 
lex = 350 and 300 nm, respectively, at ambient temperature. 
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