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A new, less time-consuming and resource-intensive approach
to predicting the ECg, ecotoxicity index, which is crucial for
assessing the impact of compounds on ecosystems, is proposed.
Efficient ECsy prediction based on infrared spectroscopy
data and ECy, values from the EcoTOX database is achieved
using machine learning. The best results with an F1-score of
0.83 were obtained with the SVC and XGBoost models.
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Chemical regulation aims to protect both human health and the
environment, with ecotoxicological research focusing on the latter.
Regulatory hazard assessment is based on extensive animal
testing, for example in the European Union, acute toxicity testing
of chemicals isrequired by the REACH (Registration, Evaluation,
Authorization and Restriction of Chemicals) legislation.! With over
200 million substances in the Chemical Abstracts Service (CAS)
archive? and over 350000 chemicals and mixtures currently
registered on the global market, chemical hazard assessment is a
major challenge.® Traditional methods for assessing their potential
impact on ecosystems are ethically controversial, often resource-
intensive (time, personnel, required test material) and inherently
unable to meet the rapid testing requirements of the ever-growing
chemical universe in need of evaluation.* These ethical and
financial considerations are the drivers for finding alternatives to
animal testing that include computational (in silico) methods.>®
This study proposes a novel approach that uses machine learning
and infrared (IR) spectroscopy techniques to efficiently and accurately
predict the half-maximal effective concentration (ECsp). IR spectral
data for a diverse set of compounds were collected and the
corresponding ECs, values were compiled from the open source
EcoTOX database.” Entries for an important taxonomic and trophic
level (producers) in aquatic ecotoxicology, algae, are included,
representing one of the largest subsets of data available in EcoTox.
For effects that are not lethality-based, toxicity is typically
characterized by an ECsq value, which is the concentration of a
substance that produces 50% of the maximal effect level, often
compared to a negative and/or positive control treatment.
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The open EcoTOX database was used as a source of ecotoxicity
data. The CSV data were obtained from the project website® and
contained the following parameters: Trophic Level, Effect Value,
Name, Test Statistics, Duration (days), Chemical Name, CAS
and others. The original dataset was filtered by the following criteria:
test statistics is ECg, and the experiment duration is 96 h. SMILES
were obtained by Chemical Name using the CirPy Python
package.® The number of compounds was then compared across
different taxonomic groups and the most represented group,
ALGAE, was selected (Figure 1). Each compound was classified
as Toxic (1) or Nontoxic (0) based on an ECs, threshold level of
100 mg dm=3, following the standard procedure for classifying
toxic compounds.’® Random Undersampling was applied to address
class imbalance in the final dataset. The final training dataset
contained 225 observations and 36 features.
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Figure 1 Number of samples of each taxonomic level group in the EcoTOX
dataset.
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Figure 2 Correlation matrix illustrating the relationships between parameters
derived from IR spectra and used in classification.

IR spectroscopy provides information on the presence of molecular
bonds that were used as predictors to classify compounds as Toxic
or Nontoxic. The dataset comprises 12200 records, each identified
by a SMILES string and containing 67 binary values indicating
the presence (1) or absence (0) of specific molecular bonds based
on IR spectroscopy data.'! SMILES were used as keys to merge
the toxicity dataset and IR spectra. To reduce dimensionality and
minimize the risk of overfitting, features with the uniform labels in
all records and features with a correlation higher than 0.75 were
removed. Figure 2 shows the correlation matrix indicating the
bond type and its corresponding wavelength.

The performance of four machine learning models was compared
to solve the problem of toxic/nontoxic substance classification based
on IR spectra. The following modelswere used: RF (RandomForest),1?
SVC (Support Vector Classifier),’® KNN (k-Nearest Neighbors)
and XGB (Extreme Gradient Boosting).®

The RandomizedSearchCV method was used to uncover the
optimal configuration of hyperparameters for the compared
machine learning models. Unlike exhaustive methods such as
GridSearchCV, RandomizedSearchCV randomly samples a subset
of hyperparameter combinations, efficiently navigating through
large parameter spaces.'® The hyperparameters were optimized
using RandomizedSearchCV with a cross-validation parameter
value of 5. Using this approach, it was possible to find a balance
between exploration and exploitation, identifying the most effective
hyperparameter settings for the considered models across diverse
datasets and algorithms.

Metrics such as F1-score and recall were used to evaluate the
performance of the applied classification model.r” F1-score,
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Figure 3 Performance of machine learning models during hyperparameter
optimization.
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Figure 4 Feature importance of the RandomForest model for toxic/nontoxic
classification of compounds using SHAP analysis.

calculated as the harmonic mean of precision and recall, provides
a balanced assessment of the model’s ability to classify instances
into different classes, especially in the presence of class imbalance.
Meanwhile, recall measures the ability of the model to correctly
identify all positive instances, irrespective of false negatives.
These metrics offered comprehensive insights into the effectiveness
of the applied classifier, guiding the understanding of its performance
in diverse classification scenarios.

To evaluate the predictive performance of the models, a series
of computational experiments were conducted. The training process
was repeated 15 times, with each iteration including a split into
test and training datasets. The resulting F1-score metrics are
depicted as boxplots in Figure 3. As shown in the graph, all
simulation runs on the test data achieved an F1-score of at least 0.78.
Notably, decision tree-based models such as XGB and RF
demonstrated more stable results. Additionally, SVC exhibited
the highest recall metric with a value of 0.79+0.01.

In this work, the importance of various molecular bonds in
predicting ECg, values was analyzed using machine learning
models, with feature contributions quantified by SHAP (SHapley
Additive exPlanations) values.'® The results of the SHAP analysis
are presented as a ranked bar chart in Figure 4. The SHAP
analysis revealed that the C—H stretch at 3070 cm™ has the
largest impact with a mean absolute SHAP value of 0.07, indicating
its significant role in the model predictions. It is closely followed
by the C-H stretch in the 700-750 cm™! range with a mean
SHAP value of 0.06. The C-H stretch at 1470 cm™* and the N-H
stretch at >3000 cm™ also make notable contributions to the model,
each with a mean SHAP value of 0.04 and 0.03, respectively.

Importantly, the cumulative effect of the 27 other molecular
features was substantial, collectively providing a mean SHAP
value of 0.16, highlighting the complexity and multiple factors
influencing ECs, predictions.

All computational experiments were performed on a PC with
16 Gb of RAM and 12 CPU cores. The source code and data are
freely available on Github.!® These studies to verify the proposed
model will be continued further for synthesized and published
hybrid organo-inorganic compounds, in which magnetite nano-
particles were modified with compounds of different nature
(alkoxysilanes, natural polyelectrolytes and metal-organic frameworks).
For some compounds, the microstructure and ECx, were determined
by IR spectroscopy.20-22
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