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Chemical regulation aims to protect both human health and the 
environment, with ecotoxicological research focusing on the latter. 
Regulatory hazard assessment is based on extensive animal 
testing, for example in the European Union, acute toxicity testing 
of chemicals is required by the REACH (Registration, Evaluation, 
Authorization and Restriction of Chemicals) legislation.1 With over 
200 million substances in the Chemical Abstracts Service (CAS) 
archive2 and over 350  000 chemicals and mixtures currently 
registered on the global market, chemical hazard assessment is a 
major challenge.3 Traditional methods for assessing their potential 
impact on ecosystems are ethically controversial, often resource-
intensive (time, personnel, required test material) and inherently 
unable to meet the rapid testing requirements of the ever-growing 
chemical universe in need of evaluation.4 These ethical and 
financial considerations are the drivers for finding alternatives to 
animal testing that include computational (in silico) methods.5,6 
This study proposes a novel approach that uses machine learning 
and infrared (IR) spectroscopy techniques to efficiently and accurately 
predict the half-maximal effective concentration (EC50). IR spectral 
data for a diverse set of compounds were collected and the 
corresponding EC50 values were compiled from the open source 
EcoTOX database.7 Entries for an important taxonomic and trophic 
level (producers) in aquatic ecotoxicology, algae, are included, 
representing one of the largest subsets of data available in EcoTox. 
For effects that are not lethality-based, toxicity is typically 
characterized by an EC50 value, which is the concentration of a 
substance that produces 50% of the maximal effect level, often 
compared to a negative and/or positive control treatment.

The open EcoTOX database was used as a source of ecotoxicity 
data. The CSV data were obtained from the project website8 and 
contained the following parameters: Trophic Level, Effect Value, 
Name, Test Statistics, Duration (days), Chemical Name, CAS 
and others. The original dataset was filtered by the following criteria: 
test statistics is EC50, and the experiment duration is 96 h. SMILES 
were obtained by Chemical Name using the CirPy Python 
package.9 The number of compounds was then compared across 
different taxonomic groups and the most represented group, 
ALGAE, was selected (Figure 1). Each compound was classified 
as Toxic (1) or Nontoxic (0) based on an EC50 threshold level of 
100 mg dm−3, following the standard procedure for classifying 
toxic compounds.10 Random Undersampling was applied to address 
class imbalance in the final dataset. The final training dataset 
contained 225 observations and 36 features.

Machine learning-enabled prediction of ecotoxicity (EC50)  
of diverse organic compounds via infrared spectroscopy

Maksim Yu. Sidorov,a Mikhail E. Gasanov,*b Artur A. Dzeranov,a,c Lyubov S. Bondarenko,a  
Anastasiya P. Kiryushina,d Vera A. Terekhova,e Gulzhian I. Dzhardimalievaa,c and Kamila A. Kydralievaa

a	Institute of General Engineering Training, Moscow Aviation Institute (National Research University),  
125993 Moscow, Russian Federation

b	Skolkovo Institute of Science and Technology, 121205 Moscow, Russian Federation.  
E-mail: gasanov.mikchail@gmail.com

c	 Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry,  
Russian Academy of Sciences, 142432 Chernogolovka, Moscow Region, Russian Federation

d	A. N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 119071 Moscow,  
Russian Federation

e	 Department of Soil Science, M. V. Lomonosov Moscow State University, 119991 Moscow,  
Russian Federation

DOI: 10.1016/j.mencom.2024.10.004

Feature 
importance

Machine 
learning

Ecotoxicity 
(EC50)

Toxic Nontoxic

IR spectra
A new, less time-consuming and resource-intensive approach 
to predicting the EC50 ecotoxicity index, which is crucial for 
assessing the impact of compounds on ecosystems, is proposed. 
Efficient EC50 prediction based on infrared spectroscopy 
data and EC50 values from the EcoTOX database is achieved 
using machine learning. The best results with an F1-score of 
0.83 were obtained with the SVC and XGBoost models.
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Figure  1  Number of samples of each taxonomic level group in the EcoTOX  
dataset.
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IR spectroscopy provides information on the presence of molecular 
bonds that were used as predictors to classify compounds as Toxic 
or Nontoxic. The dataset comprises 12 200 records, each identified 
by a SMILES string and containing 67 binary values indicating 
the presence (1) or absence (0) of specific molecular bonds based 
on IR spectroscopy data.11 SMILES were used as keys to merge 
the toxicity dataset and IR spectra. To reduce dimensionality and 
minimize the risk of overfitting, features with the uniform labels in 
all records and features with a correlation higher than 0.75 were 
removed. Figure 2 shows the correlation matrix indicating the 
bond type and its corresponding wavelength.

The performance of four machine learning models was compared 
to solve the problem of toxic/nontoxic substance classification based 
on IR spectra. The following models were used: RF (RandomForest),12 
SVC (Support Vector Classifier),13 kNN (k-Nearest Neighbors)14 
and XGB (Extreme Gradient Boosting).15

The RandomizedSearchCV method was used to uncover the 
optimal configuration of hyperparameters for the compared 
machine learning models. Unlike exhaustive methods such as 
GridSearchCV, RandomizedSearchCV randomly samples a subset 
of hyperparameter combinations, efficiently navigating through 
large parameter spaces.16 The hyperparameters were optimized 
using RandomizedSearchCV with a cross-validation parameter 
value of 5. Using this approach, it was possible to find a balance 
between exploration and exploitation, identifying the most effective 
hyperparameter settings for the considered models across diverse 
datasets and algorithms.

Metrics such as F1-score and recall were used to evaluate the 
performance of the applied classification model.17 F1-score, 

calculated as the harmonic mean of precision and recall, provides 
a balanced assessment of the model’s ability to classify instances 
into different classes, especially in the presence of class imbalance. 
Meanwhile, recall measures the ability of the model to correctly 
identify all positive instances, irrespective of false negatives. 
These metrics offered comprehensive insights into the effectiveness 
of the applied classifier, guiding the understanding of its performance 
in diverse classification scenarios.

To evaluate the predictive performance of the models, a series 
of computational experiments were conducted. The training process 
was repeated 15 times, with each iteration including a split into 
test and training datasets. The resulting F1-score metrics are 
depicted as boxplots in Figure  3. As shown in the graph, all 
simulation runs on the test data achieved an F1-score of at least 0.78. 
Notably, decision tree-based models such as XGB and RF 
demonstrated more stable results. Additionally, SVC exhibited 
the highest recall metric with a value of 0.79 ± 0.01.

In this work, the importance of various molecular bonds in 
predicting EC50 values was analyzed using machine learning 
models, with feature contributions quantified by SHAP (SHapley 
Additive exPlanations) values.18 The results of the SHAP analysis 
are presented as a ranked bar chart in Figure 4. The SHAP 
analysis revealed that the C–H stretch at 3070 cm−1 has the 
largest impact with a mean absolute SHAP value of 0.07, indicating 
its significant role in the model predictions. It is closely followed 
by the C–H stretch in the 700–750 cm−1 range with a mean 
SHAP value of 0.06. The C–H stretch at 1470 cm−1 and the N–H 
stretch at >3000 cm−1 also make notable contributions to the model, 
each with a mean SHAP value of 0.04 and 0.03, respectively.

Importantly, the cumulative effect of the 27 other molecular 
features was substantial, collectively providing a mean SHAP 
value of 0.16, highlighting the complexity and multiple factors 
influencing EC50 predictions.

All computational experiments were performed on a PC with 
16 Gb of RAM and 12 CPU cores. The source code and data are 
freely available on Github.19 These studies to verify the proposed 
model will be continued further for synthesized and published 
hybrid organo-inorganic compounds, in which magnetite nano
particles were modified with compounds of different nature 
(alkoxysilanes, natural polyelectrolytes and metal-organic frameworks). 
For some compounds, the microstructure and EC50 were determined 
by IR spectroscopy.20–22
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Figure  2  Correlation matrix illustrating the relationships between parameters 
derived from IR spectra and used in classification.
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Figure  3  Performance of machine learning models during hyperparameter 
optimization.
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Figure  4  Feature importance of the RandomForest model for toxic/nontoxic 
classification of compounds using SHAP analysis.
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