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Introduction
Computer vision (CV) and robotics have found their uses in 
many applications nowadays. With the rapid growth of the 
technological level, the use of CV has expanded to several new 

areas, from smart city surveillance cameras that ensure safe 
infrastructure1 to quality control in automated industrial plants.2 
CV mainly operates using neural network technologies that 
allow the recognition and identification of objects in the working 
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field.3,4 Solutions for the mentioned CV applications are actively 
utilized in robotics to recognize objects in the robot’s work area 
to provide additional safety measures by preventing collisions 
with objects within the area.5,6

Researchers could pursue many different approaches to 
laboratory automation. The approaches to automation can be 
divided into two main groups: process automation in the form of 
chemical reactors7 or the use of robotic technologies in the form 
of cobots and industrial robots. Collaborative robot (cobot) is a 
collective name for robotic devices with built-in safety features 
(torque and momentum sensors), which makes them a perfect 
tool for laboratory automation due to the nature of chemistry 
equipment.8 Typically, industrially manufactured cobots are 
presented in the form of articulated robotic manipulators.

A number of articles have been published that provide an 
overview of cobots and their application areas. For example, 
Taesi et al. reviewed a large number of literature sources to 
compare cobot solutions and provide an extensive market 
analysis.9 Their article covers the technical aspects of 
collaborative articulated manipulators. This paper mainly 
focuses on reviewing several cases and methods related to CV 
and cobots that research teams around the world are using to 
conduct laboratory automation. We aimed to present state-of-
the-art robotic solutions that have been developed and 
implemented in the field of chemistry. Table 1 summarizes the 
reviewed research articles that include cobots and CV 
applications in laboratory automation.

Automation of chemical laboratory
MacLeod et al. developed a self-driving laboratory (SDL) called 
Ada that uses two robots to synthesize and characterize thin film 
samples.10 Robot N9 is equipped to mix, drop-cast and anneal 
precursors to create thin film samples. It also performs imaging 
and conductivity measurements. Robot UR5 can transport 
samples to additional modules, including an X-ray fluorescence 
(XRF) microscope. In their work, a camera was used as a tool to 
collect sample images for subsequent analysis. The robot 
positioned samples 90 mm below the camera and acquired 
visible-light photographs of each sample before and after 
annealing. Using this approach, a Pareto frontier map was 
developed linking film processing temperature and conductivity 
(Figure 1). The self-guided lab, driven by a multi-objective 
optimization algorithm called q-expected hypervolume 

improvement (qEHVI), made it possible to identify synthesis 
conditions that can be adapted for a scalable sputter coating 
method capable of depositing high-quality, highly conductive 
palladium films at temperatures above 190 °C.

Burger et al.11 propose to use a mobile collaborative robot 
KUKA KMR iiwa 14 to create an autonomous chemical 
laboratory for the autonomous search for the best photocatalysts 
for hydrogen production from water. This approach allowed the 
authors to conduct 688 experiments over eight days of continuous 
automated operation (Figure 2). The photocatalyst chosen for 
the study was the conjugated polymer P10, which exhibits high 
efficiency in the hydrogen evolution reaction (HER) in the 
presence of triethanolamine. First, the robot evaluated 
30 candidate hole scavengers using a screening method without 
artificial intelligence. This revealed the potential of l-cystine as 
a reversible redox shuttle in the overall water splitting scheme. 
An autonomous robotic search was carried out on five hypotheses 
to accelerate HER. As a result, by selecting useful components 
and rejecting negative ones, this search revealed photocatalytic 

Table  1  Summary of the use of collaborative robots and detection methods in modern research papers.

Field of study Reference Using CV Main goal and tasks Methods and equipment

Investigation of film conductivity 
and processing temperature

10 − Synthesis and characterization of thin film
Collection of images of the sample before 
and after annealing for subsequent analysis

Robots (N9 and UR5e)
XRF microscope
FLIR Blackfly S USB3 vision camera

Search for improved photocatalysts 
for producing hydrogen from water

11 − Autonomous search for the optimal composition 
of photocatalytic hybrid material for efficient 
hydrogen production from water

Six-point calibration with respect  
to the black location cube
Batched Bayesian search algorithm
Robot (KUKA KMR iiwa 14)

Testing solubility in a solid–solvent 
system

12 + Checking the solubility of substances
Studying the transparency and degree of turbidity 
of solutions

Open-source Python package HeinSight
Robot (N9)

Solubility testing and recrystalli-
zation

14 + Determination of solubility of substances
Measurement of turbidity of solution
Detection of chemical glassware and assessment 
of its position

AprilTag as visual tags
OpenCV for detection
HeinSight for turbidity monitoring and 
measurement

Multiview perception of transparent 
objects

15 + Interaction of a robot with a transparent object
Perception of a transparent object

Depth estimation, segmentation and pose 
estimation using stereo camera
ResNet-50 and 3D CNN neural networks

Robotization of the process of 
synthesis and analysis of a graphene 
oxide-based membrane

16 + Empowering a robotic manipulator to use a 
centrifuge
Determining the position of a centrifuge rotor 
using CV

ABB integrated computer vision
COGNEX camera
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Figure  1  Determination of optimal conditions for low-temperature 
synthesis of sputter coatings on palladium films in a dedicated autonomous 
laboratory using an SDL equipped with a stationary robotic arm. The qEHVI 
algorithm quantified the trade-off between film conductivity and annealing 
temperature, generating an experimentally observed Pareto front (solid 
lines). For this purpose, an autonomous optimization campaign was run four 
times in a closed loop. Experimental points defining the fronts are marked 
with open markers, and selected points that are not part of the Pareto front 
are shown in gray.10
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mixtures based on the P10/l-cysteine system that were six times 
more active than the initial formulations. However, the authors 
did not use CV algorithms to understand the robot’s location in 
space, since the work took place in a dark room with light-
sensitive samples. Instead, they used a six-point calibration 
concerning the black location cube and a batched Bayesian 
search algorithm for optimal parameters.

Shiri et al. used CV to automate a fundamental chemical 
experiment in materials synthesis, solubility screening 
(Figure 3).12 The object of study was caffeine in various 
transparent solvents. The average brightness of all pixels in the 
monitored area was used as an indirect indicator of turbidity. 
This is a simple and inexpensive method for estimating relative 
turbidity with minimal computational effort. However, the study 
requires a white or light-colored solution and a transparent 
solvent. To achieve this, they developed HeinSight, an open-
source Python package. The code reads images captured by a 
webcam and analyzes the pixels to obtain a proxy value for 

turbidity. The output value of the algorithm is then compared 
with an image of pure solvent to determine whether dissolution 
has been completed. The HeinSight turbidity code has also been 
used in other studies to determine when a solute has dissolved.13,14

Wang et al.15 propose to use CV to recognize transparent 
objects for robotic manipulation tasks in home and laboratory 
settings. This task is critical in automation processes since 
transparent containers and reagents are often used in chemical 
laboratories. From a safety perspective, the robot’s ability to 
recognize these objects helps to avoid accidental spills or mixing 
of reagents, which can lead to dangerous situations. Transparent 
objects can contain important information about the contents 
(e.g., solution concentration), so robots that recognize such 
objects can more accurately perform tasks related to dispensing 
and mixing substances. Therefore, solving such a task will 
minimize errors in data collection and provide more reliable 
results. Their proposed method, MVTrans, is an end-to-end 
multi-view architecture with multiple sensing capabilities, 
including depth estimation, segmentation and scene 
understanding (constraint 3D frame and pose estimation).

As a result, a large photorealistic Syn-TODD dataset was 
collected for pre-training neural network models.

A similar application of CV is demonstrated by the work of 
Yoshikawa et al., who described the use of a collaborative 
articulated robot (Panda) in solubility and recrystallization 
problems, i.e. fundamental chemical experiments in materials 
synthesis.14 Their robotic platform takes as input an abstract 
description of a chemical experiment, then perceives the working 
environment using a camera attached to the robot gripper, a 
library with fiducial markers (AprilTag) and the OpenCV library, 
and then autonomously plans its tasks and movements using the 
PDDLStream solver.

CV software based on machine learning and neural networks
One of the main advantages of using CV in chemistry is the 
automation of experimental data acquisition and analysis. 
Traditional analytical methods such as spectroscopy or 
chromatography require a significant investment of time and 
effort, whereas CV enables real-time analysis. This not only 
speeds up the process, but also allows for analysis based on 
indirect parameters, since CV and neural networks are sensitive 
to changes in the system and can be trained to highlight specific 
experimental factors. For example, the group of Skorb et al. 
developed a method for determining the concentration of alcohol 
in a water–alcohol mixture using pre-trained convolutional 
neural networks.17 The analysis was based on indirect data, 
namely, video recordings of the behavior of cavitation bubbles 
captured by a high-speed camera. This approach is based on 
changes in the shape, lifetime and velocity of cavitation bubbles 
with changes in the density and viscosity of the liquid. The use 
of transfer learning18 reduced the amount of data needed to train 
the model. Despite the high required computing power, the use 
of the VGG network architecture19 allowed for real-time analysis. 
As a result, a model was developed that can distinguish between 
five concentrations of alcohol in a water–alcohol mixture with an 
accuracy of more than 90%. A diagram representing the 
distinguishable cavitation bubbles in a water–alcohol solution in 
the alcohol concentration range from 0 to 25% is shown in 
Figure 4(a).

Additionally, the use of CV enables the control and 
management of chemical processes. Automation of a chemical 
process creates a system free from human errors.7 Such systems 
allow continuous experimentation with varying input parameters, 
which helps in collecting data that can provide a comprehensive 
description of the chemical process. Continuing their research, 
the group of Skorb et al. improved their algorithm by applying a 
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Figure  2  Determination of the optimal composition of the P10 
photocatalyst for hydrogen evolution from water, performed by the 
automated SDL operation. The robot explored the chemical space to 
optimize the activity of the photocatalyst–scavenger combination based on 
five different hypotheses, performing 688 experiments. The graph shows the 
hydrogen evolution achieved during the offline search experiment. The 
black squares represent the baseline hydrogen evolution of 3.36 ± 0.30 μmol. 
The color transition of the dots from blue to red indicates an increase in 
hydrogen evolution.11
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Figure  3  A robotic system based on a webcam for measuring turbidity 
using CV methods. The HeinSight turbidity code captures images from the 
webcam and analyzes the pixels in a predefined region of interest (ROI) to 
produce a proxy turbidity value. In the graph, control lines are represented 
by the dashed red line, and stability regions are shaded in green.12
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lighter ResNet architecture20 and tested their approach to 
determine the octane number of gasoline.21 The approach 
showed high efficiency, judging by the results presented in 
Figure 4(b); however, it did not allow tracking the state of the 
bubbles in real time. This feature could help to estimate the 
purity of the liquid and predict the presence of potential additives 
in the future with proper data storage and analysis. Both classical 
CV and neural network models such as YOLO,22 SAM23 and 
Mask R-CNN24 can be used to implement this approach. Since 
classical CV algorithms do not provide sufficient accuracy in 
detecting cavitation bubble cluster formations, the YOLOv8 
model was used. The trained model can determine the coordinates 
and sizes of bubbles in each frame, and if a video is available, it 
can track the bubbles in real time, as shown in Figure 4(c). To use 
the model, a web interface was introduced that allows the 
analysis of pre-recorded videos, as well as screenshots, to obtain 
and analyze data from the device in real time.

Detailed overview of the automated membrane synthesis 
laboratory
Separation of components, purification and concentration of 
samples are integral stages of many chemical and biochemical 
studies. These processes are performed using centrifugation.25 
For example, when obtaining quantum dots, this method is used 
to separate the particles of the dispersed phase of a colloidal 

solution after synthesis; in the production of drugs, centrifugation 
achieves the separation of sediments or other waste.26,27 Several 
parameters can be varied during the centrifugation process, 
including the rotation speed and centrifugation time. These 
parameters can be adjusted depending on the specific 
requirements of the experiment or process. By varying the 
rotation speed, it is possible to control the force with which the 
particles are separated from each other. Changing the 
centrifugation time can affect the degree of separation of 
components. Skillful control of these parameters is critical to 
achieve the best results and the successful implementation of the 
centrifugation procedure. In this regard, automation of this 
method will allow the scientist to focus on more vital and non-
trivial tasks. It will also increase the efficiency and accuracy of 
chemical research.

In the automated synthesis and analysis of graphene oxide 
(GO) and polyethyleneimine (PEI) membranes, CV was used to 
determine the position of the centrifuge rotor so that the ABB 
YuMi cobot could perform centrifugation during the membrane 
synthesis.15 Since the membrane is prepared in excess 
polyelectrolyte, after centrifugation, all the polyelectrolytes are 
precipitated and react with GO, while the excess PEI remains in 
solution. Our research team has carried out this work, and 
therefore, some insights can be gained into the implementation 
of CV and the limitations of using the cobot.
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Figure  4  Images of cavitation bubbles in (a) an alcohol–water solution17 and (b) gasoline21 recognized using the classification algorithms. (c) Real-time 
snapshot of bubbles in gasoline processed using the segmentation algorithm.21
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             WaitTime 1;
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                 IsThereResult := TRUE;
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                 Counter := 11;
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Figure  5  (a) COGNEX camera mounted on a desiccator stand. (b) RAPIDcode from the main script that initiates the pattern recognition job. (c) Image 
captured by the camera. (d ) The pattern on the centrifuge rotor calculates the rotor position. (e) The robot places the tube into the centrifuge rotor.
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During the development of the laboratory platform, several 
constraints were imposed. Since the laboratory platform was 
designed to be located in a shared laboratory environment, the 
development team was prohibited from modifying the specialized 
laboratory equipment of the centrifuge. Extensive safety features 
such as soft arm elements and precise momentum sensors were 
the determining factor in choosing the ABB YuMi robotic 
manipulator as the tool to perform the membrane synthesis and 
analysis process; however, this limited the maximum payload 
weight to 0.5 kg or 5 N of applied force (when the applied 
momentum exceeds the allowed range, an error occurs, requiring 
manual control). To overcome the limitation of the centrifuge 
rotor, a CV system based on a COGNEX camera and RobotStudio 
Integrated vision was implemented. As a first solution, it was 
decided to place the camera on the robotic arm.

However, this approach was deemed flawed due to the extra 
load on the end-effector, which resulted in false collision detection 
by the safety system and reduced detection accuracy. To mitigate 
this issue, a unique mount was designed to place the camera on 
the desiccator stand, as shown in Figure 5(a). The described CV 
system identifies markings [Figure 5(c)] on the centrifuge rotor 
to determine its position relative to the pre-programmed points 
[Figure 5(d )], which are used to set the laboratory tubes in the 
corresponding positions. Image recognition was implemented by 
training a feed-forward neural network in the RobotStudio 
Integrated Vision tool. It was called during the main routine using 
a specifically written procedure, as shown in Figure 5(b).

After successfully recognizing the marking, the ABB YuMi 
cobot proceeds to manually move the rotor to its destined 
position and then places the laboratory tubes into the centrifuge, 
as shown in Figure 5(e).

Conclusion
This review shows that there are currently many approaches to 
laboratory automation. Cobots using CV technologies can 
significantly improve the yield and quality of experimental data; 
however, there are several limitations and nuances to consider 
when designing a laboratory automation solution. As mentioned 
earlier, such nuances may include increased safety requirements 
due to the collaborative nature of automated chemical research 
laboratories, which directly impacts design choices, such as the 
type of robot used, the introduction of additional safety features 
and the design of the robotic tool; and surrounding area 
restrictions when conducting experiments that require special 
area conditions (light-sensitive or sterile laboratory cellular and 
biological experiments).

The above challenges are specific to laboratory automation, 
since such a rapid growth in the number of solutions for 
automated laboratories requires a new type of specialist who is 
proficient in robotics and understands the specifics of chemistry.

This work was supported by the Russian Science Foundation 
(grant no. 24-13-00355).
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