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Introduction areas, from smart city surveillance cameras that ensure safe

Computer vision (CV) and robotics have found their uses in
many applications nowadays. With the rapid growth of the
technological level, the use of CV has expanded to several new

infrastructure! to quality control in automated industrial plants.?
CV mainly operates using neural network technologies that
allow the recognition and identification of objects in the working

Aleksei V. Meshkov is PhD, researcher and head of the ‘Robotization of Chemical Technologies’ group at the Infochemistry
Scientific Center at ITMO University. His research interests include nonlinear automated control, robotics and integration
of automated solutions into chemical processes and laboratories.

Veronika Yu. Yurova is a PhD student in Physical Chemistry at ITMO University. Her main research focus is the
development of a photo-controlled system based on hybrid materials, photostimulated reactions and photocatalytic materials

and its application in optical devices.
[ -~
"‘Ju

Timur A. Aliev is a PhD student in Physical Chemistry at ITMO University. His research mainly focuses on the application
of machine learning and artificial intelligence methods to chemical systems, including chemical data analysis and collection,
and automation of chemical processes.

Vladimir V. Potapov is currently a Master’s student at ITMO University, Infochemistry Scientific Center. His research
focuses on automation of chemical processes in photocatalysis using rapid prototyping methods, KUKA KMR iiwa
14 mobile robot and machine vision algorithms.

o a
Maria D. Rudakova is a Master’s student at the Infochemistry Scientific Center at ITMO University. Her main areas of

research are automation of chemical technologies, machine learning and robotization in chemistry.

Artem P. Ageev is currently pursuing a Master’s degree at ITMO University in the specialty ‘Robotization of Chemical
Technologies’. Currently, he is developing a multifunctional robotic complex for conducting chemical research, focusing on o
ensuring recognition of chemical equipment in the robot’s work area.

Ekaterina V. Skorb, Doctor of Sciences, Professor of ITMO University, St. Petersburg, Director of the Infochemistry ’
Scientific Center at ITMO University. Her research interests include the development of an interdisciplinary approach of
Infochemistry that links areas at the intersection of IT and chemistry: chemoinformatics, chemometrics, triboinformatics,

self-driving labs, artificial intelligence and large language models for chemistry.

© 2024 Mendeleev Communications. Published by ELSEVIER B.V.
on behalf of the N. D. Zelinsky Institute of Organic Chemistry of the
Russian Academy of Sciences.

- 769 -



Focus Article, Mendeleev Commun., 2024, 34, 769-773

field.3* Solutions for the mentioned CV applications are actively
utilized in robotics to recognize objects in the robot’s work area
to provide additional safety measures by preventing collisions
with objects within the area.>®

Researchers could pursue many different approaches to
laboratory automation. The approaches to automation can be
divided into two main groups: process automation in the form of
chemical reactors’ or the use of robotic technologies in the form
of cobots and industrial robots. Collaborative robot (cobot) is a
collective name for robotic devices with built-in safety features
(torque and momentum sensors), which makes them a perfect
tool for laboratory automation due to the nature of chemistry
equipment.® Typically, industrially manufactured cobots are
presented in the form of articulated robotic manipulators.

A number of articles have been published that provide an
overview of cobots and their application areas. For example,
Taesi et al. reviewed a large number of literature sources to
compare cobot solutions and provide an extensive market
analysis.® Their article covers the technical aspects of
collaborative articulated manipulators. This paper mainly
focuses on reviewing several cases and methods related to CV
and cobots that research teams around the world are using to
conduct laboratory automation. We aimed to present state-of-
the-art robotic solutions that have been developed and
implemented in the field of chemistry. Table 1 summarizes the
reviewed research articles that include cobots and CV
applications in laboratory automation.

Automation of chemical laboratory

MacLeod et al. developed a self-driving laboratory (SDL) called
Ada that uses two robots to synthesize and characterize thin film
samples.’® Robot N9 is equipped to mix, drop-cast and anneal
precursors to create thin film samples. It also performs imaging
and conductivity measurements. Robot UR5 can transport
samples to additional modules, including an X-ray fluorescence
(XRF) microscope. In their work, a camera was used as a tool to
collect sample images for subsequent analysis. The robot
positioned samples 90 mm below the camera and acquired
visible-light photographs of each sample before and after
annealing. Using this approach, a Pareto frontier map was
developed linking film processing temperature and conductivity
(Figure 1). The self-guided lab, driven by a multi-objective
optimization algorithm called g-expected hypervolume
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Figure 1 Determination of optimal conditions for low-temperature
synthesis of sputter coatings on palladium films in a dedicated autonomous
laboratory using an SDL equipped with a stationary robotic arm. The gEHVI
algorithm quantified the trade-off between film conductivity and annealing
temperature, generating an experimentally observed Pareto front (solid
lines). For this purpose, an autonomous optimization campaign was run four
times in a closed loop. Experimental points defining the fronts are marked
with open markers, and selected points that are not part of the Pareto front
are shown in gray.X

improvement (QEHVI), made it possible to identify synthesis
conditions that can be adapted for a scalable sputter coating
method capable of depositing high-quality, highly conductive
palladium films at temperatures above 190 °C.

Burger et al.!! propose to use a mobile collaborative robot
KUKA KMR iiwa 14 to create an autonomous chemical
laboratory for the autonomous search for the best photocatalysts
for hydrogen production from water. This approach allowed the
authors to conduct 688 experiments over eight days of continuous
automated operation (Figure 2). The photocatalyst chosen for
the study was the conjugated polymer P10, which exhibits high
efficiency in the hydrogen evolution reaction (HER) in the
presence of triethanolamine. First, the robot -evaluated
30 candidate hole scavengers using a screening method without
artificial intelligence. This revealed the potential of L-cystine as
a reversible redox shuttle in the overall water splitting scheme.
An autonomous robotic search was carried out on five hypotheses
to accelerate HER. As a result, by selecting useful components
and rejecting negative ones, this search revealed photocatalytic

Table 1 Summary of the use of collaborative robots and detection methods in modern research papers.

Field of study Reference Using CV  Main goal and tasks Methods and equipment
Investigation of film conductivity 10 - Synthesis and characterization of thin film Robots (N9 and UR5e)
and processing temperature Collection of images of the sample before XRF microscope
and after annealing for subsequent analysis FLIR Blackfly S USB3 vision camera
Search for improved photocatalysts 11 - Autonomous search for the optimal composition  Six-point calibration with respect
for producing hydrogen from water of photocatalytic hybrid material for efficient to the black location cube
hydrogen production from water Batched Bayesian search algorithm
Robot (KUKA KMR iiwa 14)
Testing solubility in a solid-solvent 12 + Checking the solubility of substances Open-source Python package HeinSight
system Studying the transparency and degree of turbidity Robot (N9)
of solutions
Solubility testing and recrystalli- 14 + Determination of solubility of substances AprilTag as visual tags
zation Measurement of turbidity of solution OpenCYV for detection
Detection of chemical glassware and assessment  HeinSight for turbidity monitoring and
of its position measurement
Multiview perception of transparent 15 + Interaction of a robot with a transparent object Depth estimation, segmentation and pose
objects Perception of a transparent object estimation using stereo camera
ResNet-50 and 3D CNN neural networks
Robotization of the process of 16 + Empowering a robotic manipulator to use a ABB integrated computer vision

synthesis and analysis of a graphene
oxide-based membrane

centrifuge

using CV

COGNEX camera

Determining the position of a centrifuge rotor
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Figure 2 Determination of the optimal composition of the P10
photocatalyst for hydrogen evolution from water, performed by the
automated SDL operation. The robot explored the chemical space to
optimize the activity of the photocatalyst-scavenger combination based on
five different hypotheses, performing 688 experiments. The graph shows the
hydrogen evolution achieved during the offline search experiment. The
black squares represent the baseline hydrogen evolution of 3.36 +£0.30 umol.
The color transition of the dots from blue to red indicates an increase in
hydrogen evolution.

mixtures based on the P10/L-cysteine system that were six times
more active than the initial formulations. However, the authors
did not use CV algorithms to understand the robot’s location in
space, since the work took place in a dark room with light-
sensitive samples. Instead, they used a six-point calibration
concerning the black location cube and a batched Bayesian
search algorithm for optimal parameters.

Shiri et al. used CV to automate a fundamental chemical
experiment in materials synthesis, solubility screening
(Figure 3).22 The object of study was caffeine in various
transparent solvents. The average brightness of all pixels in the
monitored area was used as an indirect indicator of turbidity.
This is a simple and inexpensive method for estimating relative
turbidity with minimal computational effort. However, the study
requires a white or light-colored solution and a transparent
solvent. To achieve this, they developed HeinSight, an open-
source Python package. The code reads images captured by a
webcam and analyzes the pixels to obtain a proxy value for
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Figure 3 A robotic system based on a webcam for measuring turbidity
using CV methods. The HeinSight turbidity code captures images from the
webcam and analyzes the pixels in a predefined region of interest (ROI) to
produce a proxy turbidity value. In the graph, control lines are represented
by the dashed red line, and stability regions are shaded in green.*?

turbidity. The output value of the algorithm is then compared
with an image of pure solvent to determine whether dissolution
has been completed. The HeinSight turbidity code has also been
used in other studies to determine when a solute has dissolved.1314

Wang et al.!® propose to use CV to recognize transparent
objects for robotic manipulation tasks in home and laboratory
settings. This task is critical in automation processes since
transparent containers and reagents are often used in chemical
laboratories. From a safety perspective, the robot’s ability to
recognize these objects helps to avoid accidental spills or mixing
of reagents, which can lead to dangerous situations. Transparent
objects can contain important information about the contents
(e.g., solution concentration), so robots that recognize such
objects can more accurately perform tasks related to dispensing
and mixing substances. Therefore, solving such a task will
minimize errors in data collection and provide more reliable
results. Their proposed method, MVTrans, is an end-to-end
multi-view architecture with multiple sensing capabilities,
including depth estimation, segmentation and scene
understanding (constraint 3D frame and pose estimation).

As a result, a large photorealistic Syn-TODD dataset was
collected for pre-training neural network models.

A similar application of CV is demonstrated by the work of
Yoshikawa et al., who described the use of a collaborative
articulated robot (Panda) in solubility and recrystallization
problems, i.e. fundamental chemical experiments in materials
synthesis.'* Their robotic platform takes as input an abstract
description of a chemical experiment, then perceives the working
environment using a camera attached to the robot gripper, a
library with fiducial markers (AprilTag) and the OpenCV library,
and then autonomously plans its tasks and movements using the
PDDLStream solver.

CV software based on machine learning and neural networks
One of the main advantages of using CV in chemistry is the
automation of experimental data acquisition and analysis.
Traditional analytical methods such as spectroscopy or
chromatography require a significant investment of time and
effort, whereas CV enables real-time analysis. This not only
speeds up the process, but also allows for analysis based on
indirect parameters, since CV and neural networks are sensitive
to changes in the system and can be trained to highlight specific
experimental factors. For example, the group of Skorb et al.
developed a method for determining the concentration of alcohol
in a water—alcohol mixture using pre-trained convolutional
neural networks.'” The analysis was based on indirect data,
namely, video recordings of the behavior of cavitation bubbles
captured by a high-speed camera. This approach is based on
changes in the shape, lifetime and velocity of cavitation bubbles
with changes in the density and viscosity of the liquid. The use
of transfer learning®® reduced the amount of data needed to train
the model. Despite the high required computing power, the use
of the VGG network architecture®® allowed for real-time analysis.
As a result, a model was developed that can distinguish between
five concentrations of alcohol in a water—alcohol mixture with an
accuracy of more than 90%. A diagram representing the
distinguishable cavitation bubbles in a water—alcohol solution in
the alcohol concentration range from 0 to 25% is shown in
Figure 4(a).

Additionally, the use of CV enables the control and
management of chemical processes. Automation of a chemical
process creates a system free from human errors.” Such systems
allow continuous experimentation with varying input parameters,
which helps in collecting data that can provide a comprehensive
description of the chemical process. Continuing their research,
the group of Skorb et al. improved their algorithm by applying a
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Figure 4 Images of cavitation bubbles in (a) an alcohol-water solution!” and (b) gasoline? recognized using the classification algorithms. (c) Real-time

snapshot of bubbles in gasoline processed using the segmentation algorithm.2

lighter ResNet architecture?® and tested their approach to
determine the octane number of gasoline.?l The approach
showed high efficiency, judging by the results presented in
Figure 4(b); however, it did not allow tracking the state of the
bubbles in real time. This feature could help to estimate the
purity of the liquid and predict the presence of potential additives
in the future with proper data storage and analysis. Both classical
CV and neural network models such as YOLO,?2 SAM? and
Mask R-CNN?* can be used to implement this approach. Since
classical CV algorithms do not provide sufficient accuracy in
detecting cavitation bubble cluster formations, the YOLOv8
model was used. The trained model can determine the coordinates
and sizes of bubbles in each frame, and if a video is available, it
can track the bubbles in real time, as shown in Figure 4(c). To use
the model, a web interface was introduced that allows the
analysis of pre-recorded videos, as well as screenshots, to obtain
and analyze data from the device in real time.

Detailed overview of the automated membrane synthesis
laboratory

Separation of components, purification and concentration of
samples are integral stages of many chemical and biochemical
studies. These processes are performed using centrifugation.?®
For example, when obtaining quantum dots, this method is used
to separate the particles of the dispersed phase of a colloidal

solution after synthesis; in the production of drugs, centrifugation
achieves the separation of sediments or other waste.?6:27 Several
parameters can be varied during the centrifugation process,
including the rotation speed and centrifugation time. These
parameters can be adjusted depending on the specific
requirements of the experiment or process. By varying the
rotation speed, it is possible to control the force with which the
particles are separated from each other. Changing the
centrifugation time can affect the degree of separation of
components. Skillful control of these parameters is critical to
achieve the best results and the successful implementation of the
centrifugation procedure. In this regard, automation of this
method will allow the scientist to focus on more vital and non-
trivial tasks. It will also increase the efficiency and accuracy of
chemical research.

In the automated synthesis and analysis of graphene oxide
(GO) and polyethyleneimine (PEI) membranes, CV was used to
determine the position of the centrifuge rotor so that the ABB
YuMi cobot could perform centrifugation during the membrane
synthesis.’® Since the membrane is prepared in excess
polyelectrolyte, after centrifugation, all the polyelectrolytes are
precipitated and react with GO, while the excess PEI remains in
solution. Our research team has carried out this work, and
therefore, some insights can be gained into the implementation
of CV and the limitations of using the cobot.

p
Step 1

Initiate CV job

(b)

WHILE Counter<=10 DO

TPWrite "Nothing found! | am taking another photo™;

CamReqlmage CognexCamera\Sceneld:= Scene_1;

WaitTime 1;

if CamNumberOfResults(CognexCamera)>=1 THEN
IsThereResult := TRUE;
TPWrire "I found a PeakyBlinder! :))";
Counter :=11;

ENDIF

WaitTime 1;

Counter := Counter + 1;

ENDWHILE
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Figure 5 (a) COGNEX camera mounted on a desiccator stand. (b) RAPIDcode from the main script that initiates the pattern recognition job. (c) Image
captured by the camera. (d) The pattern on the centrifuge rotor calculates the rotor position. (e) The robot places the tube into the centrifuge rotor.
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During the development of the laboratory platform, several
constraints were imposed. Since the laboratory platform was
designed to be located in a shared laboratory environment, the
development team was prohibited from modifying the specialized
laboratory equipment of the centrifuge. Extensive safety features
such as soft arm elements and precise momentum sensors were
the determining factor in choosing the ABB YuMi robotic
manipulator as the tool to perform the membrane synthesis and
analysis process; however, this limited the maximum payload
weight to 0.5kg or 5N of applied force (when the applied
momentum exceeds the allowed range, an error occurs, requiring
manual control). To overcome the limitation of the centrifuge
rotor, a CV system based on a COGNEX camera and RobotStudio
Integrated vision was implemented. As a first solution, it was
decided to place the camera on the robotic arm.

However, this approach was deemed flawed due to the extra
load on the end-effector, which resulted in false collision detection
by the safety system and reduced detection accuracy. To mitigate
this issue, a unique mount was designed to place the camera on
the desiccator stand, as shown in Figure 5(a). The described CV
system identifies markings [Figure 5(c)] on the centrifuge rotor
to determine its position relative to the pre-programmed points
[Figure 5(d)], which are used to set the laboratory tubes in the
corresponding positions. Image recognition was implemented by
training a feed-forward neural network in the RobotStudio
Integrated Vision tool. It was called during the main routine using
a specifically written procedure, as shown in Figure 5(b).

After successfully recognizing the marking, the ABB YuMi
cobot proceeds to manually move the rotor to its destined
position and then places the laboratory tubes into the centrifuge,
as shown in Figure 5(e).

Conclusion

This review shows that there are currently many approaches to
laboratory automation. Cobots using CV technologies can
significantly improve the yield and quality of experimental data;
however, there are several limitations and nuances to consider
when designing a laboratory automation solution. As mentioned
earlier, such nuances may include increased safety requirements
due to the collaborative nature of automated chemical research
laboratories, which directly impacts design choices, such as the
type of robot used, the introduction of additional safety features
and the design of the robotic tool; and surrounding area
restrictions when conducting experiments that require special
area conditions (light-sensitive or sterile laboratory cellular and
biological experiments).

The above challenges are specific to laboratory automation,
since such a rapid growth in the number of solutions for
automated laboratories requires a new type of specialist who is
proficient in robotics and understands the specifics of chemistry.

This work was supported by the Russian Science Foundation
(grant no. 24-13-00355).
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