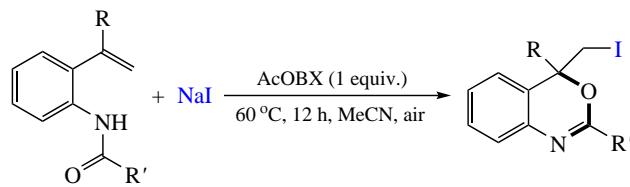


Iodocyclization of olefinic amides with acetoxybenziodoxolone and NaI toward 4-iodomethylated benzoxazines

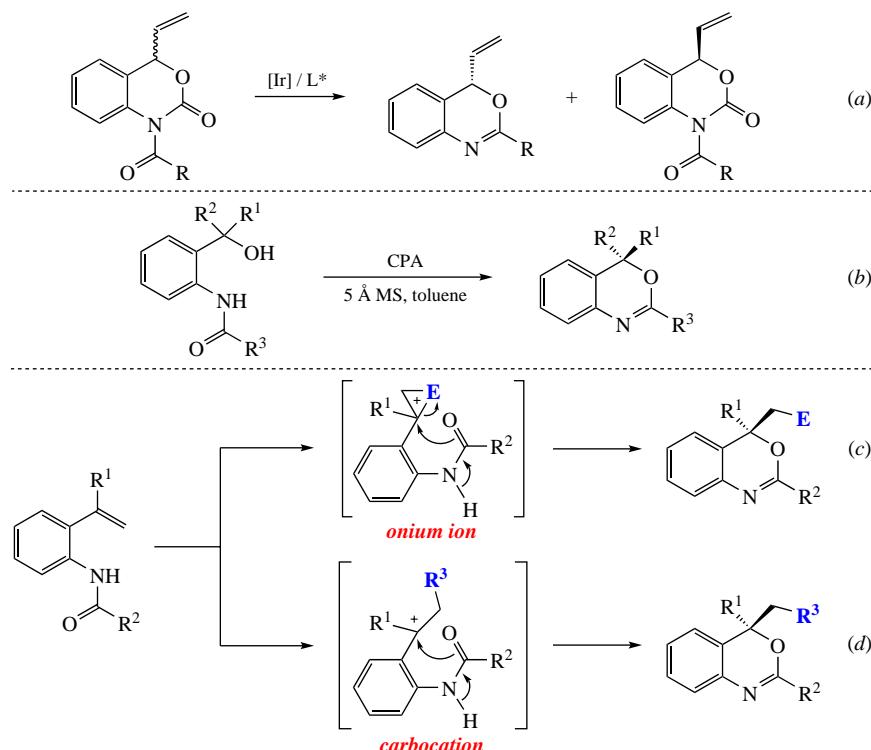
Yong Zhang,^{*a} Junxue Bai^b and Song Sun^{*b}

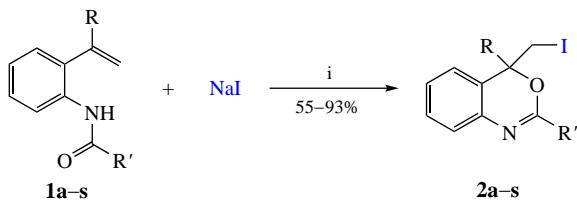

^a Suzhou Industrial Park Institute of Services and Outsourcing, Suzhou, 215123 Jiangsu, P. R. China

^b School of Petrochemical Engineering, Changzhou University, 213164 Changzhou, P. R. China.

E-mail: zhangyong@siso.edu.cn; sunsong@cczu.edu.cn

DOI: 10.1016/j.mencom.2024.06.032


Iodocyclization of *N*-(2-alkenylphenyl)carboxamides with acetoxybenziodoxolone/NaI system gives 4-iodomethyl-4*H*-3,1-benzoxazines with high efficiency. The process is triggered by the oxidation of NaI with acetoxybenziodoxolone to afford iodine cation which is added to alkene moiety to form iodonium species, and the ultimate intramolecular nucleophilic addition generates the final products.


Keywords: iodonium ion, alkene difunctionalization, 3,1-benzoxazines, organoiodine compounds, cyclization.

Functionalized benzoxazines represent a class of useful skeleton widespread in a variety of pharmaceuticals and natural products with diverse biological activities.^{1,2} Also they act as versatile building blocks for the construction of a range of bioactive molecules.^{3,4} Considering their importance, much effort has been made to synthesized them [Figure 1(a)–(c)].⁵ In this field, the intramolecular cyclization of olefinic amides with electrophiles *via* halonium ions is one of the most convenient methods for this purpose [Figure 1(d)].^{6–8} For example, Xiao

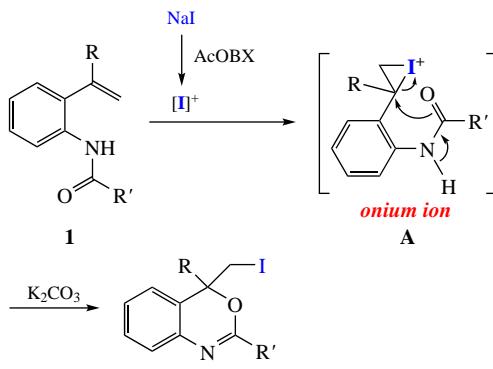
disclosed a visible-light promoted oxytrifluoromethylation of *N*-allylamides affording diverse CF₃-containing benzoxazines with good efficiency.⁹ Ji demonstrated a Cu-catalyzed oxycyanomethylation of olefinic amides by the use of acetonitrile as the cyanomethyl radical source.¹⁰ However, stoichiometric peroxide should be employed as an oxidant. To overcome these limitations, we recently disclosed a visible-light promoted radical difunctionalization of olefinic amides with bromoacetonitrile toward a series of functionalized benzoxazines.¹¹ Despite these

Figure 1 Representative examples of the synthesis of benzoxazines.

- a** R = Me, R' = Ph
b R = Me, R' = 4-MeC₆H₄
c R = Me, R' = 3-MeC₆H₄
d R = Me, R' = 2-MeC₆H₄
e R = Me, R' = 4-MeOC₆H₄
f R = Me, R' = 4-Me₂NC₆H₄
g R = Me, R' = 4-ClC₆H₄
h R = Me, R' = 4-FC₆H₄
i R = Me, R' = 2,6-Cl₂C₆H₄
j R = Me, R' = 4-BrC₆H₄
k R = Me, R' = 4-IC₆H₄
l R = Me, R' = 4-F₃CC₆H₄
m R = Me, R' = 1-naphthyl
n R = Me, R' = 2-thienyl
o R = Me, R' = 2-furyl
p R = Me, R' = PhCH=CH
q R = R' = Me
r R = Me, R' = Cy
s R = R' = Ph

Scheme 1 Reagents and optimized conditions: i, **1a–s** (0.2 mmol), acetoxybenziodoxolone (AcOBX) (0.25 mmol), NaI (0.25 mmol), K₂CO₃ (2 equiv., 0.4 mmol), MeCN (2.0 ml), 60 °C, under air, 12 h, sealed tube, unless otherwise noted.

Table 1 Optimization of the iodocyclization of *N*-[2-(prop-1-en-2-yl)phenyl]benzamide **1a** into 4-iodomethyl-4-methyl-2-phenyl-4H-3,1-benzoxazine **2a**.^a


Entry	Base	Solvent	Yield of 2a (%) ^b
1	K ₂ CO ₃	1,4-dioxane	68
2	K ₂ CO ₃	THF	65
3	K ₂ CO ₃	MeCN	92 (0°)
4	K ₂ CO ₃	DMF	86
5	Na ₂ CO ₃	MeCN	88
6	Cs ₂ CO ₃	MeCN	85
7	Bu ^t OK	MeCN	59
8	DBU	MeCN	45

^a Reaction conditions: **1a** (0.2 mmol), AcOBX (0.25 mmol), NaI (0.25 mmol), base (2 equiv., 0.4 mmol), solvent (2.0 ml), 60 °C under air, 12 h, sealed tube. ^b Isolated yield. ^c Without NaI or AcOBX.

achievements, further development of more facile and efficient methods for the construction of functionalized benzoxazines from simple starting materials under mild reaction conditions is still in high desire.

On the other hand, the halogenation of alkenes has emerged as a facile route to construct new C–X bond, which provides handles for further functionalization.^{12,13} In the field of halocyclization of olefinic amides, many works have been reported. For instance, Toste pioneered to describe the enantioselective bromocyclization of olefinic amides with tricationic brominating reagents leading to the brominated 4H-3,1-benzoxazines.¹⁴ Wei reported on oxy-iodomethylation of olefinic amides with *N*-iodosuccinimide as the iodine source.¹⁵ With our continuous interest in the difunctionalization of alkenes, herein we report a iodocyclization of olefinic amides to obtain 4-iodomethylated 3,1-benzoxazines using acetoxybenziodoxolone (AcOBX) and NaI as the combined iodine source.

To test our hypothesis, *N*-[2-(prop-1-en-2-yl)phenyl]benzamide **1a** (Scheme 1) was selected as the model substrate to react with NaI and AcOBX in the presence of 2 equiv. K₂CO₃ as the base at 60 °C in 1,4-dioxane. Delightedly, the desired product **2a** could be isolated in 68% yield (Table 1, entry 1). Based on this primary result, then some common solvents such as THF, MeCN, DMF were screened. It was found that all of them were suitable for the access to desired product **2a** while MeCN was the best (entry 3, yield 92%). Further screening the base revealed that Na₂CO₃ or Cs₂CO₃ gave the comparable results (entries 5, 6), however Bu^tOK and DBU were inferior to K₂CO₃ (entries

Scheme 2

7, 8). When the reaction was conducted without NaI or AcOBX, none of **2a** could be isolated (see entry 3).

With the optimized reaction conditions established, the substrate scope of olefinic amides was investigated (see Scheme 1).[†] Generally, all of the substrates reacted smoothly under the standard reaction conditions, leading to the desired oxy-iodomethylation products **2a–s** in good to excellent yields. Notably, all the substrates bearing different substituents on the phenyl rings at the *para*-position, regardless of their electron nature, could be transformed into the desired products **2a–l** in 75–93% yields. Typically, the steric hindrance had some effect on the reaction efficiency, as the amides with 2-methyl (**1d**) and 2,6-dichloro (**1i**) substituents gave the corresponding products **2d** and **2i** in 80 and 66% yields, respectively. Some reactive groups such as methyl (**2a**), chloro (**2g**), bromo (**2j**), iodo (**2k**) and styryl (**2p**) survived in this transformation, which provides possibilities for the further functionalization. To our delight, 1-naphthyl- (**1m**), 2-thienyl- (**1n**), 2-furyl- (**1o**) substituted analogues were also good candidates to afford the desired products **2m–o** in 66–82% yields. Subsequently, olefinic amides with *N*-acetyl (**1q**) and *N*-cyclohexylcarbonyl (**1r**) groups also reacted smoothly to give the products **1q** and **1r** in 90 and 83% yields, respectively. When *N*-[2-(1-phenylvinyl)phenyl]benzamide **1s** was involved in the reaction, the corresponding product **2s** was isolated in 55% yield.

According to the above results and some relative works,¹⁵ the reaction may follow the pathway shown in Scheme 2. Initially, NaI is oxidized with AcOBX to generate the corresponding iodine cation I⁺ which attacks the alkene moiety affording the iodonium species A. The subsequent intramolecular nucleophilic addition of the amide oxygen atom should lead to the final 4-iodomethylated benzoxazines **2**.

In summary, we have developed a procedure for the iodocyclization of olefinic amides with acetoxybenziodoxolone and NaI to synthesize a series of 4-iodomethylated 3,1-benzoxazines in good yields. This reaction features readily available materials and good functional group tolerance.

This project was financially supported by the Advanced Catalysis and Green Manufacturing Collaborative Innovation Center of Changzhou University.

[†] General procedure for the synthesis of **2a–s**. Under air, olefinic amide **1a–s** (0.2 mmol), NaI (0.25 mmol, 37.5 mg), acetoxybenziodoxolone (0.25 mmol, 76.3 mg), K₂CO₃ (0.3 mmol, 41.4 mg) and MeCN (2.0 ml) were added into a 20 ml Schlenk tube equipped with a Teflon cap. The solution was stirred at room temperature under air for about 12 h. Then, the reaction mixture was concentrated under reduced pressure and the residue was purified by flash column chromatography on silica gel with petroleum ether–ethyl acetate as eluent to give the desired product **2a–s**.

Online Supplementary Materials

Supplementary data associated with this article can be found in the online version at doi: 10.1016/j.mencom.2024.06.032.

References

- 1 P. Zhang, E. A. Terefenko, A. Fensome, J. Wrobel, R. Winneker, S. Lundein, K. B. Marschke and Z. Zhang, *J. Med. Chem.*, 2002, **45**, 4379.
- 2 R.-F. Cao, L. Yu, Y.-X. Huo, Y. Li, X.-S. Xue and Z.-M. Chen, *Org. Lett.*, 2022, **24**, 4093.
- 3 A. Krantz, R. W. Spencer, T. F. Tam, T. J. Liak, L. J. Copp, E. M. Thomas and S. P. Rafferty, *J. Med. Chem.*, 1990, **33**, 464.
- 4 G. Fenton, C. G. Newton, B. M. Wyman, P. Bagge, D. I. Dron, D. Riddell and G. D. Jones, *J. Med. Chem.*, 1989, **32**, 265.
- 5 (a) C. Li, X. Xiang, X. Zhang, Z.-L. He, S.-X. Gu and X.-Q. Dong, *Org. Lett.*, 2023, **25**, 1172; (b) X. Tan, Q. Wang and J. Sun, *Nature Commun.*, 2023, **14**, 357.
- 6 Q. Xie, H.-J. Long, Q.-Y. Zhang, P. Tang and J. Deng, *J. Org. Chem.*, 2020, **85**, 1882.
- 7 M. Chaitany and P. Anbarasan, *Org. Lett.*, 2018, **20**, 1183.
- 8 J.-F. Zhao, X.-H. Duan, H. Yang and L.-N. Guo, *J. Org. Chem.*, 2015, **80**, 11149.
- 9 Q.-H. Deng, J.-R. Chen, Q. Wei, Q.-Q. Zhao, L.-Q. Lu and W.-J. Xiao, *Chem. Commun.*, 2015, **51**, 3537.
- 10 X.-Q. Chu, X.-P. Xu, H. Meng and S.-J. Ji, *RSC Adv.*, 2015, **5**, 67829.
- 11 S. Sun, C. Zhou and J. Cheng, *Tetrahedron Lett.*, 2019, **60**, 150926.
- 12 S. A. Snyder and D. S. Treiter, *Angew. Chem., Int. Ed.*, 2009, **49**, 7899.
- 13 S. Ma and G. Chen, *Angew. Chem., Int. Ed.*, 2010, **49**, 8306.
- 14 Y.-M. Wang, J. Wu, C. Hoong, V. Rauniyar and F. D. Toste, *J. Am. Chem. Soc.*, 2012, **134**, 12928.
- 15 T.-T. Cao, W.-K. Zhang, F.-H. Qin, Q.-Q. Kang, Y. Dong, Q. Li, C. Kang and W.-T. Wei, *ACS Sustainable Chem. Eng.*, 2020, **8**, 16946.

Received: 19th February 2024; Com. 24/7399