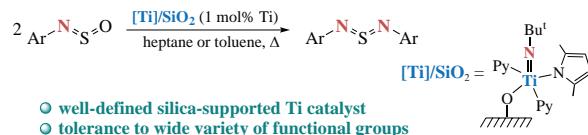


Ti-catalyzed heterometathetical condensation of *N*-sulfinylamines into sulfurdiimines

Nikolai S. Bushkov,^a Andrey V. Rumyantsev,^{a,b} Anton A. Zhizhin,^a Ivan A. Godovikov,^a Pavel A. Zhizhko^{*a} and Dmitry N. Zarubin^{*a}


^a A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119334 Moscow, Russian Federation. E-mail: zhizhko@ineos.ac.ru, zaroubine@ineos.ac.ru

^b Department of Chemistry, M. V. Lomonosov Moscow State University, 119991 Moscow, Russian Federation

DOI: 10.1016/j.mencom.2024.06.028

Well-defined silica-supported Ti imido complex ($\equiv\text{SiO}(\text{Ti}=\text{NBu}^t)(\text{Me}_2\text{Pyr})(\text{Py})_2$ (Me_2Pyr = 2,5-dimethylpyrrol) catalyzes condensation of *N*-sulfinylamines into sulfurdiimines *via* the oxo/imido heterometathesis providing a convenient synthetic route to functionalized sulfurdiimines.

Heterometathetical condensation of *N*-sulfinylamines:

Keywords: imido complexes, titanium complexes, imides, metathesis, heterometathesis, *N*-sulfinylamine, sulfurdiimine.

Aza analogs of classic organic and inorganic sulfur-containing molecules or anions, where oxygen is isolobally replaced with an imido ‘NR’ fragment, is a burgeoning field of research.¹ *N*-Sulfinylamines $\text{RN}=\text{S}=\text{O}$ and sulfurdiimines $\text{RN}=\text{S}=\text{NR}'$ isoelectronic to SO_2 are the illustrative examples of such compounds. *N*-Sulfinylamines have found a rich spectrum of applications in organic synthesis,² as well as in coordination chemistry where they serve as efficient reagents for the preparation of transition metal imides $[\text{M}]=\text{NR}$ by imidation of oxo complexes $[\text{M}]=\text{O}$ *via* a metathesis-like mechanism³ (stoichiometric oxo/imido heterometathesis⁴). Applications of sulfurdiimines are less developed, although there are examples of their use in organic chemistry (such as preparation of heterocyclic compounds *via* cycloaddition reactions⁵ and as intermediates in the synthesis of other sulfur-containing molecules^{1(a),(e),2(b)}) and as ligands in coordination chemistry.⁶ In part, this might be due to the lack of general protocols for their synthesis. Whereas *N*-sulfinylamines are readily available^{2(a)} *via* treatment of the corresponding amines with SOCl_2 ^{7(a)} or milder sulfinylating agents,^{7(b)} the synthetic routes to sulfurdiimines are less general. They involve self-condensation of $\text{RN}=\text{S}=\text{O}$ induced by stoichiometric amount of sodium^{8(a),(b)} or bases (Figure 1, path *a*),^{8(c)} application of lithiated *N*-trimethylsilylaminates (path *b*),^{8(d)} and treatment of amines with such reagents as S_2Cl_2 ^{8(e)} (path *c*) or SF_4 (path *d*).^{8(f)} The latter method requires handling of gaseous corrosive and highly toxic sulfur tetrafluoride, while strong bases may not be compatible with certain functionalities.

In recent years our group has been systematically investigating the catalytic oxo/imido heterometathesis,⁴ a novel synthetic methodology mechanistically analogous to classical olefin metathesis where the organic ‘oxo’ substrates (*i.e.* those containing $\text{X}=\text{O}$ bonds, such as aldehydes, ketones and certain carboxylic derivatives) are converted into the corresponding imino products using early transition metal oxo and imido complexes as catalysts and *N*-sulfinylamines as imidating agents

(Figure 2). In the course of these studies we found that $\text{S}=\text{O}$ moiety of *N*-sulfinylamines could also serve as an ‘oxo’ component of the reaction, *i.e.* it could be imidated by the second equivalent of RNSO resulting in a catalytic self-condensation of sulfinylamine into sulfurdiimine (see Figure 1, path *e*). The formation of sulfurdiimines was initially detected as side-reaction during the imidation of other compounds,⁹ but already in the early works we showed that it could be used as preparative method.^{9,10} A major advance in the development of catalytic oxo/imido heterometathesis was recently achieved by using well-defined silica-supported Ti imido catalysts¹¹ prepared *via* the Surface Organometallic Chemistry approach.¹² These grafted complexes demonstrated exceptional imido-transfer reactivity, whereas immobilization stabilized the intermediate $\text{Ti}=\text{O}$ species from bimolecular deactivation (Figure 2, $\text{M} = \text{Ti}$). Using self-condensation of TolNSO as a model reaction we showed in a preliminary study that silica-supported Ti imides could also efficiently catalyze this transformation.^{11(b)} Herein, we investigate the synthetic potential of this reaction for the preparation of a broader range of functionalized sulfurdiimines using currently the most active silica-supported Ti imido catalyst ($\equiv\text{SiO}(\text{Ti}=\text{NBu}^t)(\text{Me}_2\text{Pyr})(\text{Py})_2$ ($[\text{Ti}]/\text{SiO}_2$, Me_2Pyr = 2,5-dimethylpyrrol; Scheme 1).

Heating TolNSO in refluxing heptane (98°C) in the presence of 1 mol% $[\text{Ti}]/\text{SiO}_2$ (Ti content in the material $0.23 \text{ mmol Ti g}^{-1}$)

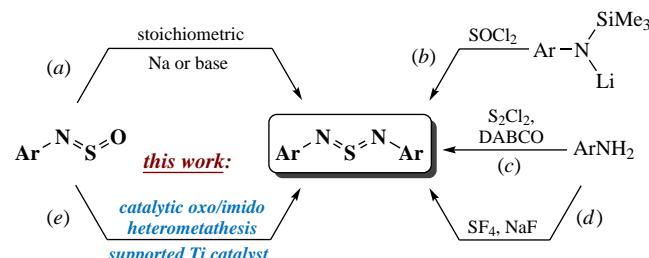


Figure 1 Main synthetic routes to sulfurdiimines.

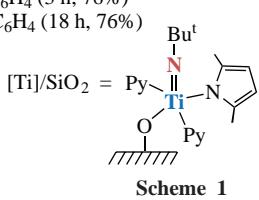



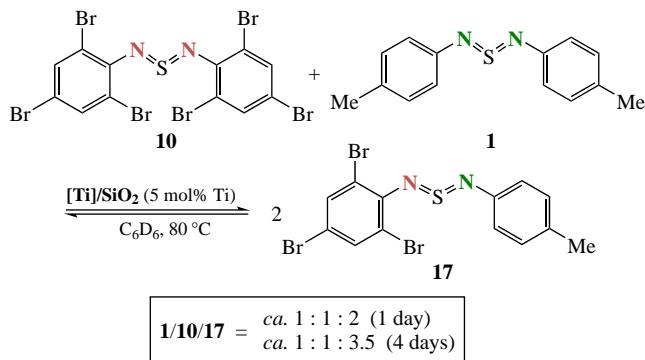
Figure 2 Oxo/imido heterometathesis catalytic cycle.

results in the formation of $\text{TolN}=\text{S}=\text{NTol}$ **1** with half-conversion time within 2–4 h. After that the reaction however slows down significantly and reaches 60–80% conversion after 24 h with no further progress. Similar behavior was observed for some other substrates, but pure products can be isolated in most cases in good to moderate yields. The reaction proved particularly efficient (in terms of both rate and final conversion) for the preparation of products **10–13** from electron-deficient polyhalogenated sulfinylamines when the conversion reached $\geq 95\%$ within 1–2 h, even despite the significant steric hindrance in case of 2,4,6-tribromophenyl derivative. Other strong electron-withdrawing groups (such as CN , NO_2) also seem to generally favor the reaction. Nevertheless, reactants with *ortho*-positioned electron-donating groups reacted smoothly as well (cf. products **8**, **9**) albeit in some cases longer reaction time was necessary (e.g. **9**).[†] Higher reactivity of electron-deficient sulfinylamines is in contrast with the trends previously observed for other

$2 \text{ Ar}' \text{N}=\text{S}=\text{O}$	$\xrightarrow[\text{heptane or toluene, } \Delta]{\text{[Ti]}/\text{SiO}_2 \text{ (1 mol\% Ti)}}$	$\text{Ar}' \text{N}=\text{S}=\text{N}'\text{Ar}$
	$- \text{SO}_2$	1–16
1 $\text{Ar}' = 4\text{-MeC}_6\text{H}_4$ (28 h, 38%) (with 2% [Ti]: 5 h, 56%)	10 $\text{Ar}' = 2,4,6\text{-Br}_3\text{C}_6\text{H}_2$ (1 h, 79%)	
2 $\text{Ar}' = 4\text{-BrC}_6\text{H}_4$ (24 h, 79%)	11 $\text{Ar}' = 2,4,6\text{-Cl}_3\text{C}_6\text{H}_2$ (2 h, 74%)	
3 $\text{Ar}' = 4\text{-NCC}_6\text{H}_4$ (5 h, 65%)	12 $\text{Ar}' = 2,3,5,6\text{-F}_4\text{C}_6\text{H}$ (1.5 h, 83%)	
4 $\text{Ar}' = 4\text{-MeOC(O)C}_6\text{H}_4$ (4 h, 52%)	13 $\text{Ar}' = 3,5\text{-}(\text{F}_3\text{C})_2\text{C}_6\text{H}_3$ (2 h, 82%)	
5 $\text{Ar}' = 2\text{-FC}_6\text{H}_4$ (2 h, 74%)	14 $\text{Ar}' = 2\text{-MeOC(O)C}_6\text{H}_4$ (24 h, <30% conv.)	
6 $\text{Ar}' = 2\text{-O}_2\text{NC}_6\text{H}_4$ (4 h, 80%)	15 $\text{Ar}' = 2\text{-Pr}^i\text{C}_6\text{H}_4$ (24 h, traces)	
7 $\text{Ar}' = 2\text{-NCC}_6\text{H}_4$ (4 h, 77%)	16 $\text{Ar}' = 4\text{-MeOC}_6\text{H}_4$ (24 h, 30% conv.)	
8 $\text{Ar}' = 2\text{-MeSC}_6\text{H}_4$ (3 h, 76%)		
9 $\text{Ar}' = 2\text{-MeOC}_6\text{H}_4$ (18 h, 76%)		

Scheme 1

[†] We have very recently shown that $\text{Ti}(\text{NEt}_2)_4/\text{SiO}_2$ activated with anilines could be used as a simple and efficient equivalent of $[\text{Ti}]/\text{SiO}_2$ (that is more challenging to prepare) in different oxo/imido heterometathesis reactions.¹³ Using compounds **10** and **12** as illustrative examples, we confirmed that this system could also be applied for the synthesis of sulfurdiiamines reported here. Compounds **10** and **12** were prepared in 74 and 86% yields using 1 mol% $\text{Ti}(\text{NEt}_2)_4/\text{SiO}_2$ *in situ* activated with 2 mol% TolNH_2 , with reaction time being only slightly longer than for $[\text{Ti}]/\text{SiO}_2$.


heterometathesis reactions, where electronic effects in RNSO were negligible and steric factors dominated.^{10(b),11(a),14} However, these trends were found for sulfinylamines acting as imidating agents, while in this case they play a dual role of both imidating agent and oxo substrate and thus the electrophilic properties likely become crucial for their reactivity as oxo component (in line with the higher reactivity of electrophilic ketones). Several RNSO were found unreactive. Whereas in the cases **14**, **15** this can be ascribed to steric bulk, somewhat surprising is the poor reactivity of 4-MeOC₆H₄NSO that is in contrast to the *ortho*-isomer (**16** vs. **9**). 1-Adamantyl-containing analog, *i.e.* AdNSO, remained unchanged under the reaction conditions.

In order to better understand the factors that preclude reaching quantitative conversion in the case of certain substrates, we carried out a detailed monitoring of the condensation of TolNSO (see Online Supplementary Materials for details). It was found that in the beginning of the reaction it showed almost quantitative material balance (the formation of $\text{TolN}=\text{S}=\text{NTol}$ followed the consumption of TolNSO), however at later stages the conversion of TolNSO started to exceed the formation of $\text{TolN}=\text{S}=\text{NTol}$. The amount of sulfurdiiamine reached a plateau at *ca.* 80% conversion after 24 h while TolNSO kept being consumed. Concomitantly, a growth of an additional product was detected by GC. The latter was identified as azotoluene ($\text{TolN}=\text{NTol}$) using ¹H NMR and GC-FID (by comparison with an authentic sample) and by GC-MS. Its amount constituted *ca.* 2–3% after 24 h and increased to *ca.* 10–15% after several days of reflux when TolNSO was fully consumed. The *in situ* ¹H NMR experiments demonstrated that (1) azotoluene likely arose from the decomposition of sulfurdiiamine, and (2) the catalyst was involved in this process. When $\text{TolN}=\text{S}=\text{NTol}$ was heated in C₆D₆ at 100 °C in an NMR tube for 48 h, only trace amounts of azotoluene were observed. Then *ca.* 4 mol% of $[\text{Ti}]/\text{SiO}_2$ was added and after further 3 days of heating the formation of *ca.* 7% of $\text{TolN}=\text{NTol}$ was detected in solution.[‡] Moreover, free pyridine and *p*-toluidine which could be present in the reaction media as a result of the catalyst decomposition cause the formation of neither sulfurdiiamine nor azo-compound (prolonged heating of TolNSO in heptane with 10 mol% of both amines did not reveal any transformations). While elucidating the mechanism of the formation of azo by-product will require further investigation, this result is noteworthy as it likely uncovers a previously unknown catalyst decomposition pathway that may be relevant to all the oxo/imido heterometathesis reactions that utilize N-sulfinylamines as imidating agents.

It should be noted that whereas the formation of azo compounds likely results from an irreversible catalyst deactivation, the formation of sulfurdiiamines is not detrimental for the imidation of other substrates because they can also be used as imidating agents instead of *N*-sulfinylamines.[§] This implies that sulfurdiiamines are able to undergo stoichiometric exchange with oxo and imido complexes and thus the latter should also catalyze metathesis of sulfurdiiamines. Indeed, when compounds **1** and **10** were heated together in C₆D₆ at 80 °C overnight, no changes were observed. However, when 5 mol% $[\text{Ti}]/\text{SiO}_2$ was added to the reaction mixture, a new product was

[‡] It should be noted that the formation of minor unidentified by-products was also observed by GC in the reactions with other RNSO, which may explain the lower final conversion in certain cases. This implies that longer reaction time is not desirable and that for preparative purposes it could be more beneficial to slightly increase the catalyst loading. This was confirmed by repeating the synthesis of $\text{TolN}=\text{S}=\text{NTol}$ with 2 mol% $[\text{Ti}]/\text{SiO}_2$ that gave 56% yield after 5 h of reflux (see Scheme 1).

[§] This is particularly useful in case of thermolabile RNSO where the corresponding RNSNR typically are more stable.¹⁴

Scheme 2

formed with an ^1H NMR spectrum compatible with the unsymmetrical sulfuriimine **17** (Scheme 2). Although the examples of such exchange catalyzed by alkali metals (presumably *via* a radical mechanism) are known,^{8(b)} to our knowledge this is the first example of transition metal mediated catalytic metathesis of sulfuriimines, which expands the family of catalytic ‘imide/imide’ heterometathesis reactions that previously included metathesis of imines and carbodiimides.⁴ The mechanism of this process is likely similar to that postulated for related carbodiimide metathesis catalyzed by W and V imides¹⁵ involving surface metallacyclic trisimidosulfato intermediates ($\equiv\text{SiO}(\text{Ti}\{\kappa^2-\text{RN}-\text{S}(\text{=NR})-\text{NR}\}(\text{Me}_2\text{Pyr})(\text{Py})_x$). It should be noted that in the molecular chemistry of group 4 transition metal imides in some cases such complexes were found to be stable enough to be isolated and characterized by XRD and spectroscopic techniques.¹⁶ Perhaps the relatively low yield of sulfuriimines **1** and **16** is also due to the formation of such stable to retrocyclization surface species.

In summary, we investigated the Ti-catalyzed heterometathetical self-condensation of *N*-sulfinylamines and found it to be a convenient method for the preparation of functionalized sulfuriimines, especially those containing electron-withdrawing groups (*e.g.* polyhalogenated). We also demonstrated the first example of catalytic sulfuriimine metathesis mediated by transition metal imido complex, and identified a potential catalyst decomposition pathway that involves the formation of azo compounds and may play an important role in oxo/imido heterometathesis reactions utilizing *N*-sulfinylamines as a source of imido group.

This work was financially supported by the Russian Science Foundation (grant no. 19-73-10163). Elemental analyses and NMR measurements were performed using the equipment of the Center for Molecular Composition Studies of INEOS RAS supported by the Ministry of Science and Higher Education of the Russian Federation (contract no. 075-00277-24-00).

Online Supplementary Materials

Supplementary data associated with this article can be found in the online version at doi: 10.1016/j.mencom.2024.06.028.

References

- (a) Z.-X. Zhang and M. C. Willis, *Trends Chem.*, 2023, **5**, 3; (b) M. J. Tilby, D. F. Dewez, A. Hall, C. Martínez Lamenca and M. C. Willis, *Angew. Chem., Int. Ed.*, 2021, **60**, 25680; (c) M. T. Passia, N. Bormann, J. S. Ward, K. Rissanen and C. Bolm, *Angew. Chem., Int. Ed.*, 2023, **62**, e202305703; (d) J. Jung, A. Münch, R. Herbst-Irmer and D. Stalke, *Angew. Chem., Int. Ed.*, 2021, **60**, 5679; (e) D. Stalke, *Chem. Commun.*, 2012, **48**, 9559; (f) I. Yu. Bagryanskaya, Yu. V. Gatilov, M. M. Shakirov and A. V. Zibarev, *Mendeleev Commun.*, 2002, **12**, 167; (g) R. Mews, P. G. Watson and E. Lork, *Coord. Chem. Rev.*, 1997, **158**, 233; (h) R. Fleischer, S. Freitag, F. Pauer and D. Stalke, *Angew. Chem., Int. Ed.*, 1996, **35**, 204; (i) R. Appel and B. Ross, *Angew. Chem., Int. Ed.*, 1968, **7**, 546.
- (a) T. Q. Davies and M. C. Willis, *Chem. – Eur. J.*, 2021, **27**, 8918; (b) G. A. Oliver, M. N. Loch, A. U. Augustin, P. Steinbach, M. Sharique, U. K. Tambar, P. G. Jones, C. Bannwarth and D. B. Werz, *Angew. Chem., Int. Ed.*, 2021, **60**, 25825; (c) L. E. Longobardi, V. Wolter and D. W. Stephan, *Angew. Chem., Int. Ed.*, 2015, **54**, 809.
- (a) G. La Monica and S. Cenini, *Inorg. Chim. Acta*, 1978, **29**, 183; (b) S. Cenini and M. Pizzotti, *Inorg. Chim. Acta*, 1980, **42**, 65; (c) K. Korn, A. Schorm and J. Sundermeyer, *Z. Anorg. Allg. Chem.*, 1999, **625**, 2125; (d) K. Weber, K. Korn, A. Schorm, J. Kipke, M. Lemke, A. Khorost, K. Harms and J. Sundermeyer, *Z. Anorg. Allg. Chem.*, 2003, **629**, 744; (e) K. A. Rufanov, J. Kipke and J. Sundermeyer, *Dalton Trans.*, 2011, **40**, 1990; (f) D. N. Zarubin and N. A. Ustyryuk, *Russ. Chem. Rev.*, 2006, **75**, 671.
- P. A. Zhizhko, N. S. Bushkov, A. V. Pichugov and D. N. Zarubin, *Coord. Chem. Rev.*, 2021, **448**, 214112.
- G. Kresze and W. Wucherpfennig, *Angew. Chem., Int. Ed.*, 1967, **6**, 149.
- K. Vrieze and G. van Koten, in *Comprehensive Coordination Chemistry*, eds. G. Wilkinson, R. D. Gillard and J. A. McCleverty, Pergamon, Oxford, 1987, vol. 2, ch. 13.5.1, pp. 189–244.
- (a) A. Michaelis, *Justus Liebigs Ann. Chem.*, 1893, **274**, 200; (b) H. K. Yong and M. S. Jai, *Tetrahedron Lett.*, 1985, **26**, 3821.
- (a) G. Leandri and P. Rebora, *Gazz. Chim. Ital.*, 1957, **87**, 503; (b) K. Bestari, R. T. Oakley and A. W. Cordes, *Can. J. Chem.*, 1991, **69**, 94; (c) H.-H. Hörrhold and J. Beck, *J. Prakt. Chem.*, 1969, **311**, 621; (d) Y. X. Ding and W. P. Weber, *J. Org. Chem.*, 1987, **52**, 4625; (e) L. S. Konstantinova, K. A. Lysov and O. A. Rakitin, *Synthesis*, 2013, **45**, 655; (f) R. D. Peacock and I. N. Rozhkov, *J. Chem. Soc. A*, 1968, 107.
- 9 A. A. Zhizhin, D. N. Zarubin and N. A. Ustyryuk, *Mendeleev Commun.*, 2009, **19**, 165.
- 10 (a) P. A. Zhizhko, A. A. Zhizhin, D. N. Zarubin and N. A. Ustyryuk, *Mendeleev Commun.*, 2012, **22**, 64; (b) P. A. Zhizhko, A. A. Zhizhin, O. A. Belyakova, Y. V. Zubavichus, Y. G. Kolyagin, D. N. Zarubin and N. A. Ustyryuk, *Organometallics*, 2013, **32**, 3611.
- 11 (a) P. A. Zhizhko, A. V. Pichugov, N. S. Bushkov, F. Allouche, A. A. Zhizhin, D. N. Zarubin and N. A. Ustyryuk, *Angew. Chem., Int. Ed.*, 2018, **57**, 10879; (b) P. A. Zhizhko, A. V. Pichugov, N. S. Bushkov, A. V. Rumyantsev, K. I. Utegenov, V. N. Talanova, T. V. Strelkova, D. Lebedev, D. Mance and D. N. Zarubin, *Organometallics*, 2020, **39**, 1014.
- 12 C. Copéret, A. Comas-Vives, M. P. Conley, D. P. Estes, A. Fedorov, V. Mougel, H. Nagae, F. Núñez-Zarur and P. A. Zhizhko, *Chem. Rev.*, 2016, **116**, 323.
- 13 A. V. Rumyantsev, N. S. Bushkov, M. A. Ryzhikova, A. A. Zhizhin, R. Takazova, V. Talanova, E. I. Gutsul, R. A. Novikov, P. A. Zhizhko and D. N. Zarubin, *Dalton Trans.*, 2024, **53**, 4976.
- 14 A. V. Rumyantsev, A. V. Pichugov, N. S. Bushkov, D. Y. Aleshin, T. V. Strelkova, O. L. Lependina, P. A. Zhizhko and D. N. Zarubin, *Chem. Commun.*, 2021, **57**, 2625.
- 15 (a) I. Meisel, G. Hertel and K. Weiss, *J. Mol. Catal.*, 1986, **36**, 159; (b) K. R. Birdwhistell, J. Lanza and J. Pasos, *J. Organomet. Chem.*, 1999, **584**, 200.
- 16 T. Gehrmann, M. Kruck, H. Wadeohl and L. H. Gade, *Chem. Commun.*, 2012, **48**, 2397.

Received: 27th February 2024; Com. 24/7405