

A particular mechanism of the effect of lone pair E Te^{IV} dopant atoms on visible-light photocatalytic activity of anatase TiO₂

Mikhail V. Korolenko, Pavel B. Fabritchnyi, Yury A. Teterin, Konstantin I. Maslakov and Mikhail I. Afanasov

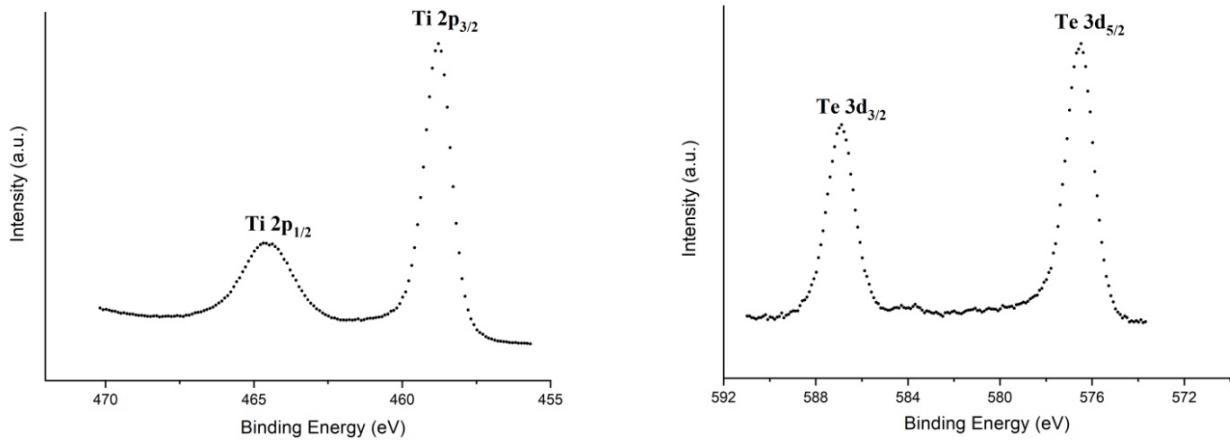

Routine X-Ray Diffraction (XRD) measurements were performed on a powder sample ARL X'TRA Thermo Scientific diffractometer using Cu K α radiation (wavelength $\lambda = 1.5418 \text{ \AA}$). All the studied catalysts were found to be single-phase anatase type (space group *I4₁/amd*) polycrystalline materials. An XRD pattern of the catalyst 0.25 at% Te^{IV}/TiO₂ obtained by annealing under argon atmosphere the co-precipitated hydroxide precursor is shown in Figure S1.

Figure S1 XRD pattern of the catalyst 0.25 at% Te^{IV}/TiO₂ synthesized by annealing the hydroxide precursor under argon atmosphere for 2 h at 500 °C.

Their specific surface area S_{BET} determined by the BET method was found to be ca 58 m² g⁻¹ and virtually not dependent on tellurium dopant concentration.

X-ray photoelectron spectroscopy (XPS) measurements were carried out with a Kratos Axis Ultra DLD spectrometer (Kratos Analytical Ltd, UK) using monochromatic Al K α radiation ($h\nu = 1486.6 \text{ eV}$) and charge compensation. Powder samples were analyzed in the as-prepared state. Atomic concentrations ratios [tellurium] to [titanium] were determined using areas of the Te 3d_{5/2} ($E_b = 574 \text{ eV}$ range) and Ti 2p_{3/2} (459 eV range) peaks with Scofield correction and Shirley background subtraction (Figure S2).

Figure S2 XPS characterization of the tellurium to titanium ratio within nearly 5 nm thin surface adjacent layers of crystallites in the catalyst 0.25 at% Te^{IV}/TiO₂.