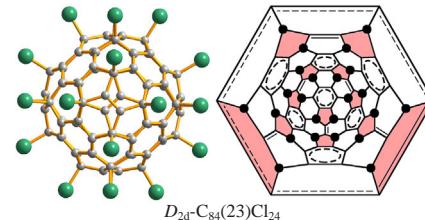


Preparation and crystal structure of D_{2d} -C₈₄(23)Cl₂₄ chlorofullerene


Sergey I. Troyanov

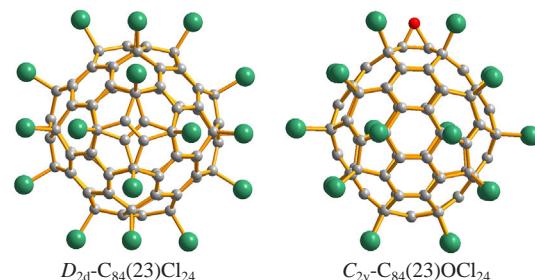
Department of Chemistry, M. V. Lomonosov Moscow State University, 119991 Moscow, Russian Federation.

Fax: +7 495 939 1240; e-mail: stroyano@thermo.chem.msu.ru

DOI: 10.1016/j.mencom.2024.04.031

Chlorofullerene D_{2d} -C₈₄(23)Cl₂₄ was prepared by chlorination of D_{2d} -C₈₄(23) with VCl₄ or SbCl₅ at 320–350 °C. An X-ray crystallographic study with the use of synchrotron radiation revealed the addition pattern of 24 Cl atoms stabilized by the formation of isolated C=C bonds and benzenoid rings on the carbon cage.

Keywords: higher fullerenes, C₈₄, chlorination, IPR isomers, structure elucidation.


In spite of the discovery of fullerenes about four decades ago, the chemistry of higher fullerenes (above C₇₀) still remains in its infancy. The studies are hampered by the low abundance of higher fullerenes in the fullerene soot, the existence of numerous structural isomers, and difficulties of their separation.¹ The mostly studied compound classes are halogeno and perfluoroalkyl derivatives of higher fullerenes up to C₁₀₈ and C₉₈, respectively.^{2,3} The most abundant higher fullerene, C₈₄, has 24 topologically possible isomers obeying the Isolated-Pentagon-Rule (IPR).^{1,4–8} Several IPR isomers of C₈₄ nos. 4, 5, 11, 16, 18, 22, 23, and 24 (the numbering according to the spiral code¹) have been reported as perfluoroalkyl derivatives.^{9–14} At the same time, structural data on chlorinated C₈₄ are available only for two minor IPR isomers in C₈₄(5)Cl_{20,32} and C₈₄(11)Cl_{20,22},^{12,15} whereas no data for the major isomers, C₈₄(22) and C₈₄(23), were reported so far.

In this communication, the data on the synthesis and X-ray crystal structure of a chlorofullerene, D_{2d} -C₈₄(23)Cl₂₄, are reported. The chlorination pattern featuring the formation of stabilizing substructures on the carbon cage are discussed in detail. The structure of the oxidation product, C₈₄(23)OCl₂₄, is presented as well.

Experimentally, the main chromatographic HPLC fraction of C₈₄, containing primarily isomers C₈₄(23) admixed with C₈₄(22) was chlorinated with an excess of SbCl₅ or VCl₄ in glass ampoules at 320–350 °C for 3–5 days. After cooling, the ampoule was opened and the excess of SbCl₅/VCl₄ and SbCl₃/VCl₃ formed were removed by washing, sequentially, with conc. HCl, dilute HCl, and water, leaving orange-colored crystalline phase of chlorofullerene. Its composition, C₈₄(23)Cl₂₄, and crystal structure were determined by the single crystal X-ray diffraction study with the use of synchrotron radiation. Remarkably, the same compound was obtained by chlorination of the separately prepared sample of C₈₄(CF₃)_n(C₂F₅)_n with SbCl₅ under the conditions described above.¹¹ In some experiments using SbCl₅ not fully purified from antimony oxochlorides, similar crystalline phase of C₈₄(23)OCl₂₄ was obtained as proven by single crystal X-ray diffraction study.

The molecular structures of D_{2d} -C₈₄(23)Cl₂₄ and C_{2v} -C₈₄(23)OCl₂₄ are shown in Figure 1.[†] The crystallographic symmetry of both molecules, S_4 , is lower. The idealised point

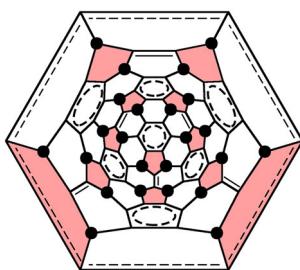

symmetry of D_{2d} -C₈₄(23)Cl₂₄ corresponds exactly to the point symmetry of the starting D_{2d} -C₈₄(23) fullerene because of the symmetric arrangement of 24 Cl atoms. In contrast, an oxygen atom in C₈₄(23)OCl₂₄ is attached in an epoxide mode to only one C–C bond thus lowering D_{2d} symmetry of the molecule. In fact, the molecule of epoxide, C₈₄(23)OCl₂₄, adopts C_{2v} or C_2 symmetry depending on the addition site of O atom. In the disordered crystal structure, the distribution of one O atom over six partially occupied positions imitates a more symmetric, S_4 , arrangement.

Figure 1 Molecular structures of D_{2d} -C₈₄(23)Cl₂₄ and C_{2v} -C₈₄(23)OCl₂₄. The projection of D_{2d} -C₈₄(23)Cl₂₄ is given along the main D_2 axis. In the projection of the C_{2v} -C₈₄(23)OCl₂₄ molecule parallel to the mirror plane, only one epoxide O atom is shown whereas it is distributed over six positions in the disordered crystal packing.

[†] *Crystal data.* Synchrotron X-ray data were collected at 100 K at the BESSY storage ring (BL14.2/3, PSF, Germany) using a MAR225 CCD detector ($\lambda = 0.8856$ or 0.8950 Å). The crystal structures were solved by SHELXS and refined with SHELXL. C₈₄Cl₂₄, tetragonal, $I\bar{4}$, $a = 13.912(1)$ and $c = 16.184(2)$ Å, $V = 3132.3(6)$ Å³, $Z = 2$. The refinement with 3563 reflections and 262 parameters converged to $wR_2 = 0.167$ and $R_1 = 0.060$ for 2909 reflections with $I > 2\sigma(I)$. C₈₄OCl₂₄, tetragonal, $I\bar{4}$, $a = 13.948(1)$ and $c = 16.052(2)$ Å, $V = 3122.9(6)$ Å³, $Z = 2$. The refinement with 3428 reflections and 255 parameters converged to $wR_2 = 0.175$ and $R_1 = 0.063$ for 2654 reflections with $I > 2\sigma(I)$.

CCDC 2323029 and 2323030 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via <http://www.ccdc.cam.ac.uk>.

Figure 2 Schlegel diagram of D_{2d} -C₈₄(23)Cl₂₄. Cage pentagons are shown red. Black circles denote the attachment positions of chlorine atoms. Isolated C=C bonds and benzenoid rings are indicated with solid double lines and dashed ovals, respectively. All six C=C bonds are possible epoxidation sites in the molecule of C₈₄(23)OCl₂₄.

The chlorination pattern of D_{2d} -C₈₄(23)Cl₂₄ is presented as a Schlegel diagram in Figure 2. The arrangement of 24 Cl atoms is highly symmetric, thus retaining D_{2d} symmetry of the starting fullerene molecule. Each of 12 cage pentagons is occupied by two chlorine addends at the average C–Cl distance of 1.813 Å which is a typical value for IPR chlorofullerenes.² The groups of four C–Cl attachments isolate altogether six sp²–sp² C=C bonds (av. bond length is 1.338 Å) which is a strong stabilizing factor of the whole molecule. An additional stabilization occurs due to the formation of aromatic substructures, eight benzenoid rings, on the carbon cage. Thus, a remarkable feature of the chlorine arrangement is the participation of each Cl attachment in the isolation of one C=C bond and two benzenoid rings, which has not been observed previously in the molecules of chlorofullerenes.

Theoretical DFT calculations^{16,17} confirmed a high relative stability of D_{2d} -C₈₄(23)Cl₂₄ among chlorofullerenes. In the absence of structural data on isomeric C₈₄Cl₂₄ chlorofullerenes, we calculated the chlorination enthalpy per one Cl atom, $E(\text{Cl})$, and the values of $\Delta E(\text{Cl})$ relative to $E(\text{Cl})$ of D_{3d} -C₆₀Cl₃₀ taken as a standard, for which the formation enthalpy is determined experimentally. The previous formation energy calculations for a wide range of multi chlorinated fullerenes revealed that, as a rule, the chlorination enthalpy decreases monotonously with increasing number of attached Cl atoms, regardless of the carbon cage size. The $\Delta E(\text{Cl})$ value of D_{2d} -C₈₄(23)Cl₂₄, 9.6 kJ mol^{−1}, is significantly higher than those of C₈₄(5)Cl₂₀ and C₈₄(11)Cl₂₂, 2.8 and 7.5 kJ mol^{−1}, respectively, despite the lower number of attached Cl atoms in the latter. A comparison with other known IPR chlorofullerenes with 24 attached Cl atoms ($\Delta E(\text{Cl})$ in kJ mol^{−1}) of T_h -C₆₀Cl₂₄ (−1.6), C_2 -C₇₆(1)Cl₂₄ (3.4), C_S -C₉₀(35)Cl₂₄ (4.5), and four isomeric C₉₆Cl₂₄ (0.2–4.5) clearly demonstrates an outstanding stability of D_{2d} -C₈₄(23)Cl₂₄ in the family of chlorofullerenes.²

The product of a partial oxidation, C₈₄(23)OCl₂₄, is a monoepoxide with one O atom attached to the isolated C–C bond (see Figure 1), the position of which is statistically disordered in the crystal structure over six orientations. Note that the attachment of oxygen as an epoxide in C₈₄(23)OCl₂₄ is fully different to the case of C_{2h} -C₆₀Cl₃₀O₂ where both O atoms are inserted across C–C bonds, resulting in the formation of an intramolecular diether.¹⁸

In summary, a chloro derivative of the highly abundant C₈₄ isomer, D_{2d} -C₈₄(23)Cl₂₄, was synthesized and structurally characterized. The addition pattern of 24 attached Cl atoms features the formation of six isolated C=C bonds and eight benzenoid rings on the carbon cage, which contribute to the enhanced stability among other multi chlorinated fullerenes.

References

- 1 P. W. Fowler and D. E. Manolopoulos, *An Atlas of Fullerenes*, Clarendon, Oxford, 1995.
- 2 S. I. Troyanov and E. Kemnitz, *Curr. Org. Chem.*, 2012, **16**, 1060.
- 3 O. V. Boltalina, A. A. Popov, I. V. Kuvychko, N. B. Shustova and S. H. Strauss, *Chem. Rev.*, 2015, **115**, 1051.
- 4 T. J. S. Dennis, T. Kai, T. Tomiyama and H. Shinohara, *Chem. Commun.*, 1998, 619.
- 5 T. J. S. Dennis, T. Kai, K. Asato, T. Tomiyama, H. Shinohara, T. Yoshida, Y. Kobayashi, H. Ishiwatari, Y. Miyake, K. Kikuchi and Y. Achiba, *J. Phys. Chem. A*, 1999, **103**, 8747.
- 6 G. Sun and M. Kertesz, *J. Phys. Chem. A*, 2001, **105**, 5212.
- 7 J. Cioslowski, N. Rao and D. Moncrieff, *J. Am. Chem. Soc.*, 2000, **122**, 8265.
- 8 D. S. Sabirov, O. Ori and I. László, *Fullerenes, Nanotubes Carbon Nanostruct.*, 2018, **26**, 100.
- 9 I. E. Kareev, I. V. Kuvychko, N. B. Shustova, S. F. Lebedkin, V. P. Bubnov, O. P. Anderson, A. A. Popov, O. V. Boltalina and S. H. Strauss, *Angew. Chem., Int. Ed.*, 2008, **47**, 6204.
- 10 I. E. Kareev, A. A. Popov, I. V. Kuvychko, N. B. Shustova, S. F. Lebedkin, V. P. Bubnov, O. P. Anderson, K. Seppelt, S. H. Strauss and O. V. Boltalina, *J. Am. Chem. Soc.*, 2008, **130**, 13471.
- 11 N. B. Tamm, L. N. Sidorov, E. Kemnitz and S. I. Troyanov, *Chem. – Eur. J.*, 2009, **15**, 10486.
- 12 S. Yang, C. Chen, T. Wei, N. B. Tamm, E. Kemnitz and S. I. Troyanov, *Chem. – Eur. J.*, 2012, **18**, 2217.
- 13 N. B. Tamm, V. A. Brotsman and S. I. Troyanov, *Mendeleev Commun.*, 2020, **30**, 474.
- 14 V. I. Kovalenko, R. A. Tuktamisheva and A. R. Khamatgalimov, *Russ. J. Phys. Chem. A*, 2014, **88**, 103 (*Zh. Fiz. Khim.*, 2014, **88**, 81).
- 15 S. Yang and S. I. Troyanov, *Mendeleev Commun.*, 2022, **32**, 640.
- 16 D. N. Laikov, *Chem. Phys. Lett.*, 1997, **281**, 151.
- 17 J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, **77**, 3865.
- 18 S. I. Troyanov, *Inorg. Chim. Acta*, 2023, **544**, 121240.

Received: 11th January 2024; Com. 24/7366