

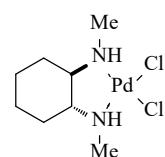
**Chiral vicinal diamines as promising ligands in Pd-catalyzed
reductive Heck type cyclizations**

**Maria A. Ashatkina, Alexander N. Reznikov, Dmitry S. Nikerov, Daria I. Shamshina,
Maria V. Sizova, Vadim A. Shiryaev and Yuri N. Klimochkin**

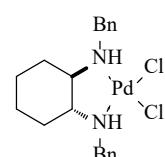
Contents

1. General information	S2
2. Experimental procedures	S2
3. Copies of NMR spectra for compounds 2a-f	S6
4. Copies of HPLC chromatograms for compounds 2a,b,c,e,f	S12
5. Crystal data and structure refinement for 2b, 5	S16
6. Calculation of specific rotation	S18
References	S18

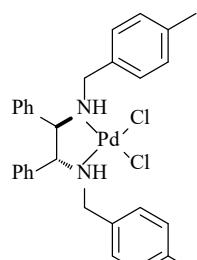
Figure S1. Representative bioactive compounds containing indoline and 2,3-dihydrobenzofuran core


1. General information

All commercial reagents were used without further purification. All solvents were distilled prior to use. *{N,N'-Bis[(1S)-1-phenylethyl]ethane-1,2-diamine-κ²N,N'}*(dichloro)palladium,⁵⁷ (1*R*,2*R*)-*N,N'*-dimethylcyclohexane-1,2-diamine,⁵⁸ (1*R*,2*R*)-*N,N'*-dibenzylcyclohexane-1,2-diamine,⁵⁹ (1*R*,2*R*)-*N,N'*-bis(4-methylbenzyl)-1,2-diphenylethane-1,2-diamine⁶⁰ were obtained according to the reported procedures. Melting points were measured with an OptiMelt automated melting point system. All reactions were monitored by TLC, performed on precoated silica gel plates (Sorbfil); compounds were made visible with I₂. ¹H, ¹³C NMR spectra were recorded with a JEOL JNM-ECX400 spectrometer at 400, 100.5 MHz, respectively, in CDCl₃ solution. Elemental analysis was performed with a EuroVector EA-3000 analyzer. Optical rotations were measured with Rudolph Research Analytical (Autopol V Plus Automatic Polarimeter). The enantiomeric purity of the products was determined by HPLC analysis on Shimadzu Prominence LC-20AD (Spd-20auv vis detector, Cto-20a column oven, Dgu-20a degassing unit) equipped with a chiral stationary phase column (ChiralPAK AD-3) with hexane/2-propanol as eluent and with a chiral stationary phase column ChiralPAK AD-3R with water/acetonitrile as eluent. The high resolution mass spectra (HRMS) of compounds **2a-f** were obtained on an Agilent AccuTOF 6230 mass-spectrometer. The high resolution mass spectra (HRMS) of compounds **4,5,6** were obtained on a Bruker Ultraflex III MALDI-TOF/TOF mass spectrometer in the reflectron mode. The device is equipped with a solid-state laser Nd:YAG laser ($\lambda = 355$ nm, repetition rate 100 Hz). Measurements were made in the range *m/z* 200-1000. A mixture of the sample in CHCl₃ and calibrant PEG-400 (0.1 mg ml⁻¹, MeCN) was prepared to determine the exact mass values. *p*-Nitroaniline (10 mg ml⁻¹, MeCN) was used as a matrix. Portions (0.5 μ l) of the matrix solution and the analyzed mixture were sequentially applied to the target and evaporated. The metal target MTP AnchorChipTM was used. The data was obtained using the FlexControl program (Bruker Daltonik GmbH, Germany) and processed using the FlexAnalysis 3.0 program (Bruker Daltonik GmbH, Germany). IR spectra were obtained on a Shimadzu IRAffinity-1 instrument using a Specac® Quest ATR ATR attachment.

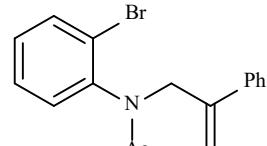

2. Experimental procedures

General procedure for catalysts synthesis. To a solution of diamine (0.757 mmol) in CH₂Cl₂ (4 ml) was added [PdCl₂(cod)] (0.19 g, 0.690 mmol) in CH₂Cl₂ (6 ml) and boiled for 1 h. The solvent was distilled off under reduced pressure. Diethyl ether was added to the residue. The formed precipitate was filtered off and washed with diethyl ether. Dried in vacuum.

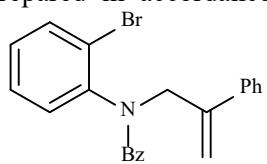

((*R,R*)-*N,N*-Dimethylcyclohexane-1,2-diamine-κ²-*N,N'*)(dichloro)palladium (4). This compound was prepared in accordance with the general procedure from (*R,R*)-*N,N*-dimethylcyclohexane-1,2-diamine (0.11 g, 0.757 mmol). Yield: 0.18 g (84%), yellow crystals, mp 281-282 °C (decomp.). **IR (ν/cm⁻¹):** 3113 (s), 2935 (m), 2862 (m), 2360 (w), 1454 (m), 1161 (w), 1076 (m), 1006 (m), 952 (s), 910 (w), 894 (w), 848 (w), 794 (w), 736 (w), 590 (s). **MALDI-TOF HRMS (m/z):** [M+K]⁺ calcd. for [C₈H₁₈Cl₂N₂Pd+K]⁺ 356.9513, found 356.9543.

((*R,R*)-*N,N*-Dibenzylcyclohexane-1,2-diamine-κ²-*N,N'*)(dichloro)palladium (5). This compound was prepared in accordance with the general procedure from (*R,R*)-*N,N*-dibenzylcyclohexane-1,2-diamine (0.22 g, 0.757 mmol). Yield: 0.20 g (62%), yellow crystals, mp 232-233 °C (decomp.), $[\alpha]_D^{20} = +190.9$ (*c* 1.0, CHCl₃). **¹H NMR (400 MHz, CDCl₃) δ:** 0.72-0.82 (m, 1H, CH₂), 1.00-1.65 (m, 6H, CH₂), 1.95-2.05 (m, 1H, CH₂), 2.40-2.60 (m, 1H, CH₂-N), 3.35-3.47 (m, 1H, CH₂Ph), 3.79 (d, 1H, *J* 13.2 Hz, CH₂Ph), 4.21-4.25 (m, 2H, CH₂Ph, CH₂-N), 4.36 (d, 1H, *J* 13.2 Hz, CH₂Ph), 5.49 (br s, 1H, NH), 5.64 (br s, 1H, NH), 7.20-7.55 (m, 8H, Ph), 8.05 (d, 2H, *J* 7.2 Hz, Ph). **¹³C NMR (100.5 MHz, CDCl₃) δ:** 24.3 (CH₂), 24.4 (CH₂), 30.2 (CH₂), 31.5 (CH₂), 51.2 (CH₂Ph), 52.2 (CH₂Ph), 62.4 (CH₂-N), 66.5 (CH₂-N), 128.1 (CH_{Ar}), 128.7 (CH_{Ar}), 128.8 (CH_{Ar}), 128.9 (CH_{Ar}), 129.0 (CH_{Ar}), 130.8 (CH_{Ar}), 135.3 (C_{Ar}), 137.3 (C_{Ar}). **IR (ν/cm⁻¹):** 3437 (w), 3074 (m), 2941 (w), 1602 (w), 1496 (s), 1454 (s), 1286 (w), 1207 (w), 1128 (w), 1111 (w), 939 (m), 871 (m), 736 (vs), 696 (vs). **MALDI-TOF HRMS (m/z):** [M+K]⁺ calcd. for [C₂₀H₂₆Cl₂N₂Pd+K]⁺ 509.0139, found 509.0164.

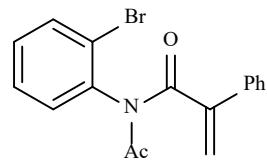
((1*R*,2*R*)-*N¹,N²*-bis(4-methylbenzyl)-1,2-diphenylethane-1,2-diamine-κ²-*N,N'*)(dichloro)palladium (6). This compound was prepared in accordance with the general procedure from (1*R*,2*R*)-*N¹,N²*-bis(4-methylbenzyl)-1,2-diphenylethane-1,2-diamine (0.32 g, 0.757 mmol). Yield: 0.30 g (74%), yellow crystals, mp 238-239 °C



(decomp.), $[\alpha]_D^{20} = +220.0$ (c 1.0, CHCl_3). **$^1\text{H NMR}$ (400 MHz, CDCl_3)** δ : 2.20 (s, 3H, CH_3), 2.48 (s, 3H, CH_3), 3.16 (d, 1H, J 12.0 Hz, CH_2), 3.64 (dd, 1H, J 14.2, 7.4 Hz, CH_2), 4.31-4.41 (m, 2H, CH , CH_2), 4.74 (d, 1H, J 12.0 Hz, CH_2), 5.92 (dd, 1H, J 12.8, 4.6 Hz, CH), 6.05 (br s, 1H, NH), 6.32 (br s, 1H, NH), 6.81-7.22 (m, 12H, aromatic), 7.39 (d, 2H, J 7.8 Hz, aromatic), 7.60 (d, 2H, J 7.2 Hz, aromatic), 8.37 (d, 2H, J 7.8 Hz, aromatic). **$^{13}\text{C NMR}$ (100.5 MHz, CDCl_3)** δ : 21.2 (CH_3), 21.5 (CH_3), 51.2 (CH_2), 51.5 (CH_2), 66.9 (CH), 68.6 (CH), 128.1 (CH_{Ar}), 128.4 (CH_{Ar}), 128.6 (CH_{Ar}), 128.8 (CH_{Ar}), 129.0 (CH_{Ar}), 129.1 (CH_{Ar}), 129.7 (CH_{Ar}), 130.4 (CH_{Ar}), 130.9 (CH_{Ar}), 131.1 (C_{Ar}), 132.7 (C_{Ar}), 133.1 (C_{Ar}), 134.9 (C_{Ar}), 136.7 (C_{Ar}), 138.5 (C_{Ar}). **IR (ν/cm^{-1})**: 3122 (w), 2920 (w), 1516 (m), 1498 (m), 1456 (m), 1444 (m), 1373 (w), 1209 (w), 1184 (w), 1120 (w), 1018 (w), 883 (m), 840 (w), 796 (s), 763 (s), 752 (s), 700 (vs), 574 (m), 522 (s). **MALDI-TOF HRMS (m/z)**: $[\text{M}+\text{K}]^+$ calcd. for $[\text{C}_{30}\text{H}_{32}\text{Cl}_2\text{N}_2\text{Pd}+\text{K}]^+$ 635.0609, found 635.0611.

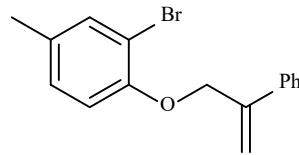

General procedure for the synthesis of compounds 1a,b,e

Sodium hydride (60% dispersion in mineral oil, 0.73 g, 18.30 mmol) was added portionwise with stirring to a solution of the corresponding amide (16.70 mmol) in dry THF (50 ml). The mixture was stirred for 10 min and then a solution of (3-bromoprop-1-en-2-yl)benzene (3.94 g, 20.0 mmol) or 2-phenylacrylic acid chloride (3.6 g, 21.71 mmol) in dry THF (20 ml) was added. The resulting mixture was stirred at room temperature for 96 hours. The reaction mixture was poured into water (150 ml) and extracted with ethyl acetate (2×25 ml). The extract was dried over sodium sulfate and the solvent was distilled off under reduced pressure.

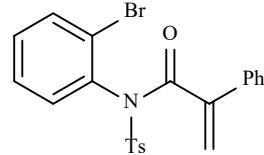

N-(2-Bromophenyl)-N-(2-phenylallyl)acetamide (1a). This compound was prepared in accordance with the general procedure from *N*-(2-bromophenyl)acetamide (3.25 g, 16.70 mmol). The product was purified by recrystallization from hexane. Yield: 3.13 g (57%), colorless cryst., m.p. 58-61 °C. **$^1\text{H NMR}$ (400 MHz, CDCl_3)** δ : 1.73 (s, 3H, CH_3), 3.92 (d, 1H, J 14.8 Hz, $\text{CH}_2\text{-N}$), 5.00 (s, 1H, $=\text{CH}_2$), 5.35 (s, 1H, $=\text{CH}_2$), 5.74 (d, 1H, J 14.8 Hz, $\text{CH}_2\text{-N}$), 6.67-6.69 (m, 1H, aromatic), 7.14-7.17 (m, 2H, aromatic), 7.27-7.34 (m, 3H, aromatic), 7.42-7.45 (m, 2H, aromatic), 7.62-7.64 (m, 1H, aromatic). **$^{13}\text{C NMR}$ (100.5 MHz, CDCl_3)** δ : 22.7 (CH_3), 50.0 ($\text{CH}_2\text{-N}$), 116.9 ($=\text{CH}_2$), 123.7 (C_{Ar}), 126.4 (2C, CH_{Ar}), 128.0 (CH_{Ar}), 128.2 (CH_{Ar}), 128.6 (2C, CH_{Ar}), 129.8 (CH_{Ar}), 131.6 (CH_{Ar}), 133.8 (CH_{Ar}), 138.5 ($\text{C}=\text{CH}_2$), 140.5 (C-N), 143.5 (C_{Ar}), 170.4 (C=O). **IR (ν/cm^{-1})**: 3283 (w), 3059 (w), 2963 (w), 2916 (w), 1659 (vs), 1470 (s), 1381 (vs), 1277 (vs), 1249 (s), 1091 (m), 1015 (s), 907 (vs), 775 (vs), 752 (vs), 709 (vs), 682 (vs), 613 (m), 594 (m), 559 (s). **MS, m/z (I_{rel} , %)**: 329 [$\text{M}]^+$ (8), 289 (90), 287 (100), 250 (40), 206 (30), 196 (30), 186 (50), 184 (62), 155 (10), 130 (15), 117 (40), 115 (55), 103 (25), 91 (35), 77 (32). **Anal. calcd for $\text{C}_{17}\text{H}_{16}\text{BrNO}$** : C 61.83; H 4.88; N 4.24. **Found**: C 61.88, H 4.92, N 4.34.

N-(2-Bromophenyl)-N-(2-phenylallyl)benzamide (1b). This compound was prepared in accordance with the general procedure from *N*-(2-bromophenyl)benzamide (4.59 g, 16.70 mmol). The product was purified by column chromatography (eluent petroleum ether). Yield: 4.11 g (63%), colorless cryst., m.p. 102-104 °C. **$^1\text{H NMR}$ (400 MHz, CDCl_3)** δ : 4.17 (d, 1H, J 15.2 Hz, $\text{CH}_2\text{-N}$), 5.16 (s, 1H, $=\text{CH}_2$), 5.41 (s, 1H, $=\text{CH}_2$), 5.97 (d, 1H, J 15.2 Hz, $\text{CH}_2\text{-N}$), 6.51 (dd, 1H, J 7.4 Hz, 1.4 Hz, aromatic), 6.90-6.98 (m, 2H, aromatic), 7.05-7.09 (m, 2H, aromatic), 7.13-7.20 (m, 3H, aromatic), 7.28-7.37 (m, 3H, aromatic), 7.43-7.52 (m, 3H, aromatic). **$^{13}\text{C NMR}$ (100.5 MHz, CDCl_3)** δ : 50.6 ($\text{CH}_2\text{-N}$), 116.8 ($=\text{CH}_2$), 123.4 (C_{Ar}), 126.6 (CH_{Ar}), 127.5 (CH_{Ar}), 127.6 (CH_{Ar}), 127.7 (CH_{Ar}), 128.1 (CH_{Ar}), 128.6 (CH_{Ar}), 129.2 (CH_{Ar}), 129.6 (CH_{Ar}), 132.7 (CH_{Ar}), 133.4 (CH_{Ar}), 136.1 (C_{Ar}), 138.6 ($\text{C}=\text{CH}_2$), 140.7 (C-N), 143.6 (C_{Ar}), 170.8 (C=O). **IR (ν/cm^{-1})**: 3071 (w), 3024 (w), 2970 (w), 2943 (w), 1632 (vs), 1574 (m), 1474 (s), 1447 (m), 1369 (vs), 1350 (vs), 1281 (s), 1254 (s), 1219 (m), 1150 (m), 1065 (m), 1030 (m), 987 (m), 907 (s), 791 (s), 768 (s), 741 (s), 710 (vs), 691 (vs), 667 (m), 640 (m), 567 (s), 532 (m). **MS, m/z (I_{rel} , %)**: 391 [$\text{M}]^+$ (8), 312 (12), 286 (8), 260 (18), 258 (20), 207 (8), 115 (10), 105 (100), 77 (41). **Anal. calcd for $\text{C}_{22}\text{H}_{18}\text{BrNO}$** : C 67.36; H 4.63; N 3.57. **Found**: C 67.41, H 4.66, N 3.59.

N-Acetyl-N-(2-bromophenyl)-2-phenylacrylamide (1e). This compound was prepared in accordance with the general procedure from *N*-(2-bromophenyl)acetamide (3.25 g, 16.70 mmol). The reaction mixture was stirred for 12 hours. The product was purified by column chromatography (eluent petroleum ether/EtOAc 5:1). Yield: 2.46 g (43%), colorless cryst., m.p. 90-92 °C. **$^1\text{H NMR}$ (400 MHz, CDCl_3)** δ : 2.47 (s, 3H, CH_3), 5.49 (s, 1H, $=\text{CH}_2$), 5.74 (s, 1H, $=\text{CH}_2$), 6.81-6.83 (m, 1H, aromatic), 7.12-7.17 (m, 4H, aromatic), 7.25-7.28 (m, 3H, aromatic), 7.53-7.56 (m, 1H, aromatic).

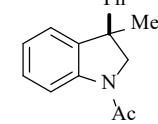


¹³C NMR (100.5 MHz, CDCl₃) δ: 26.4 (CH₃), 118.7 (=CH₂), 124.3 (C_{Ar}), 126.3 (CH_{Ar}), 128.1 (CH_{Ar}), 128.5 (CH_{Ar}), 128.6 (CH_{Ar}), 130.2 (CH_{Ar}), 131.3 (CH_{Ar}), 133.5 (CH_{Ar}), 135.8 (C_{Ar}), 137.3 (C=CH₂), 146.1 (C_{Ar}-N), 171.3 (C=O), 172.4 (C=O). **IR (ν/cm⁻¹):** 3101 (w), 3059 (w), 3032 (w), 1718 (s), 1689 (vs), 1614 (m), 1575 (m), 1498 (m), 1471 (s), 1433 (m), 1365 (s), 1332 (m), 1288 (m), 1251 (m), 1228 (vs), 1161 (s), 1026 (s), 925 (m), 915 (m), 786 (m), 765 (s), 758 (s). **MS, m/z (I_{rel}, %):** 345 [M]⁺ (8), 343 (8), 317 (10), 315 (10) 301 (7), 222 (42), 196 (10), 193 (8), 131 (4), 104 (10), 103 (100), 90 (8), 77 (30), 76 (10). Anal. calcd for C₁₇H₁₄BrNO₂: C 59.32; H 4.10; N 4.07. Found: C 59.37; H 4.17; N 4.16.

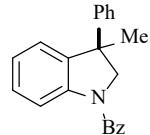

N-(2-Bromophenyl)-4-methyl-N-(2-phenylallyl)benzenesulfonamide (1c) was obtained according to reported procedures.^{S11} Yield: 57%.

2-Bromo-4-methyl-1-(2-phenylallyloxy)benzene (1d) was obtained according to reported procedures.^{S12} The product was purified by column chromatography (eluent CCl₄). Yield: 76%, colorless oil.

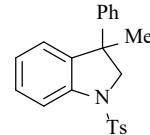
¹H NMR (400 MHz, CDCl₃) δ: 2.29 (s, 3H, CH₃), 4.93 (s, 2H, CH₂O), 5.58 (s, 1H, =CH₂), 5.62 (s, 1H, =CH₂), 6.86 (d, 1H, *J* 8.0 Hz, aromatic), 7.04 (d, 1H, *J* 8.0 Hz, aromatic), 7.38-7.39 (m, 4H, aromatic), 7.50 (m, 2H, aromatic). **¹³C NMR (100.5 MHz, CDCl₃) δ:** 20.3 (CH₃), 70.8 (CH₂O), 112.3 (C_{Ar}), 113.9 (CH_{Ar}), 114.7 (=CH₂), 126.2 (2C, CH_{Ar}), 128.1 (CH_{Ar}), 128.6 (2C, CH_{Ar}), 128.9 (CH_{Ar}), 132.0 (C_{Ar}), 133.9 (CH_{Ar}), 138.5 (C_{Ar}), 142.7 (C=CH₂), 152.9 (C_{Ar}-O). **IR (ν/cm⁻¹):** 1605 (m), 1493 (vs), 1450 (m), 1382 (w), 1285 (m), 1250 (s), 1053 (s), 1023 (m), 907 (m), 775 (s), 752 (vs), 702 (vs). **MS, m/z (I_{rel}, %):** 302 [M]⁺ (10), 287 (8), 224 (12), 209 (52), 208 (20), 179 (14), 165 (14), 152 (8), 145 (18), 115 (42), 103 (100), 91 (74), 78 (22), 77 (90), 65 (38), 63 (16), 51 (26). Anal. calcd for C₁₆H₁₅BrO: C 63.38; H 4.99. Found: C 63.42; H 4.97.


N-(2-Bromophenyl)-2-phenyl-N-tosylacrylamide (1f). A solution of 2-phenylacrylic acid chloride (1.46 g, 8.78 mmol) in CH₂Cl₂ (0.4 M) was added dropwise to a mixture of *N*-(2-bromophenyl)-4-methylbenzenesulfonamide (2.20 g, 6.75 mmol) and Et₃N (1.02 g, 10.1 mmol) cooled to 0 °C in 42 mL CH₂Cl₂. The reaction mass was stirred for 12 hours at room temperature, then extracted with ethyl acetate (3×15 ml). Organic extracts were combined and washed with NaHCO₃, dried over sodium sulfate. The solvent was evaporated under reduced pressure. The product was purified by column chromatography (eluent petroleum ether/EtOAc 7%). Yield: 1.47 g (48%), colorless cryst., m.p. 141-143°C. **¹H NMR (400 MHz, CDCl₃) δ:** 2.46 (s, 3H, CH₃), 5.37 (s, 1H, =CH₂), 5.73 (s, 1H, =CH₂), 6.71 (dd, 1H, *J* 8.0, 1.6 Hz, aromatic), 6.89-6.93 (m, 3H, aromatic), 7.07-7.12 (m, 1H, aromatic), 7.14-7.18 (m, 2H, aromatic), 7.21-7.23 (m, 1H, aromatic), 7.34 (d, 2H, *J* 8.0, aromatic), 7.47 (dd, 1H, *J* 8.0, 1.6 Hz, aromatic), 8.01 (d, 2H, *J* 8.4 Hz, aromatic). **¹³C NMR (100.5 MHz, CDCl₃) δ:** 21.8 (CH₃), 120.9 (CH₂), 125.2 (C_{Ar}), 126.0 (CH_{Ar}), 127.3 (CH_{Ar}), 128.5 (CH_{Ar}), 128.6 (CH_{Ar}), 129.3 (CH_{Ar}), 130.0 (CH_{Ar}), 130.7 (CH_{Ar}), 133.4 (CH_{Ar}), 133.8 (CH_{Ar}), 134.8 (C_{Ar}), 135.6 (C_{Ar}), 135.9 (C_{Ar}), 144.9 (C=CH₂), 145.3 (C_{Ar}-N), 168.9 (C=O). **IR (ν/cm⁻¹):** 3061 (w), 3026 (w), 2922 (w), 2852 (w), 1695 (s), 1476 (m), 1363 (s), 1168 (s), 1155 (vs), 1082 (vs), 968 (m), 929 (m), 815 (m), 761 (s), 704 (s). Anal. calcd for C₂₂H₁₈BrNO₃S: C 57.90; H 3.98; N 3.07; S 7.03. Found: C 57.95; H 3.95; N 3.17; S 7.13.

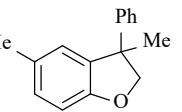
General procedure of reductive Heck reaction:

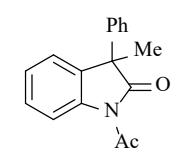

Catalyst **5** (10 mol.%, 0.052 mmol) and DMF (1 ml) were added to an ampule filled with argon. The mixture was stirred until complete dissolution of the catalyst. Then sodium acetate (0.11 g, 1.29 mmol), sodium formate (70 mg, 1.03 mmol), compound **1a-f** (0.52 mmol) and a solution of 15-crown-5 (11 mg, 0.052 mmol) in DMF (1 ml) were added. The reaction mixture was stirred for 24 h at a temperature of 80 °C in a sealed ampoule in an argon atmosphere. After cooling, the reaction mixture was poured into 5 ml of water and extracted with ethyl acetate (3×5 ml).

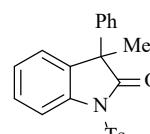
1-Acetyl-3-methyl-3-phenylindoline (2a). The product was purified by column chromatography (eluent petroleum ether/EtOAc 10:1). Yield: 86 mg (66%), colorless cryst, m.p. 81-83 °C, $[\alpha]_D^{20} = -6.2$ (*c* 1.0, CHCl₃). **¹H NMR (400 MHz, CDCl₃) δ:** 1.77 (s, 3H, CH₃), 2.18 (s, 3H, CH₃), 4.03 (d, 1H, *J* 11.4 Hz, CH₂), 4.15 (d, 1H, *J* 11.4 Hz, CH₂), 6.97-7.07 (m, 2H, aromatic), 7.23-7.30 (m, 6H, aromatic), 8.27 (d, 1H, *J* 8.4 Hz, aromatic). **¹³C NMR (100.5 MHz, CDCl₃) δ:** 24.3 (CH₃), 27.2 (CH₃), 48.0 (C-3), 65.9 (C-2), 117.1 (CH_{Ar}), 124.0 (CH_{Ar}), 124.2 (CH_{Ar}), 126.5 (2CH_{Ar}), 126.8 (CH_{Ar}), 128.2 (CH_{Ar}), 128.6 (2CH_{Ar}), 139.5 (C_{Ar}), 142.4 (C_{Ar}), 146.9 (C_{Ar}), 168.7 (C=O). **IR (ν/cm⁻¹):** 2970 (w), 2882 (w), 1655 (vs), 1593 (m), 1481 (s), 1400 (vs), 1358 (m),



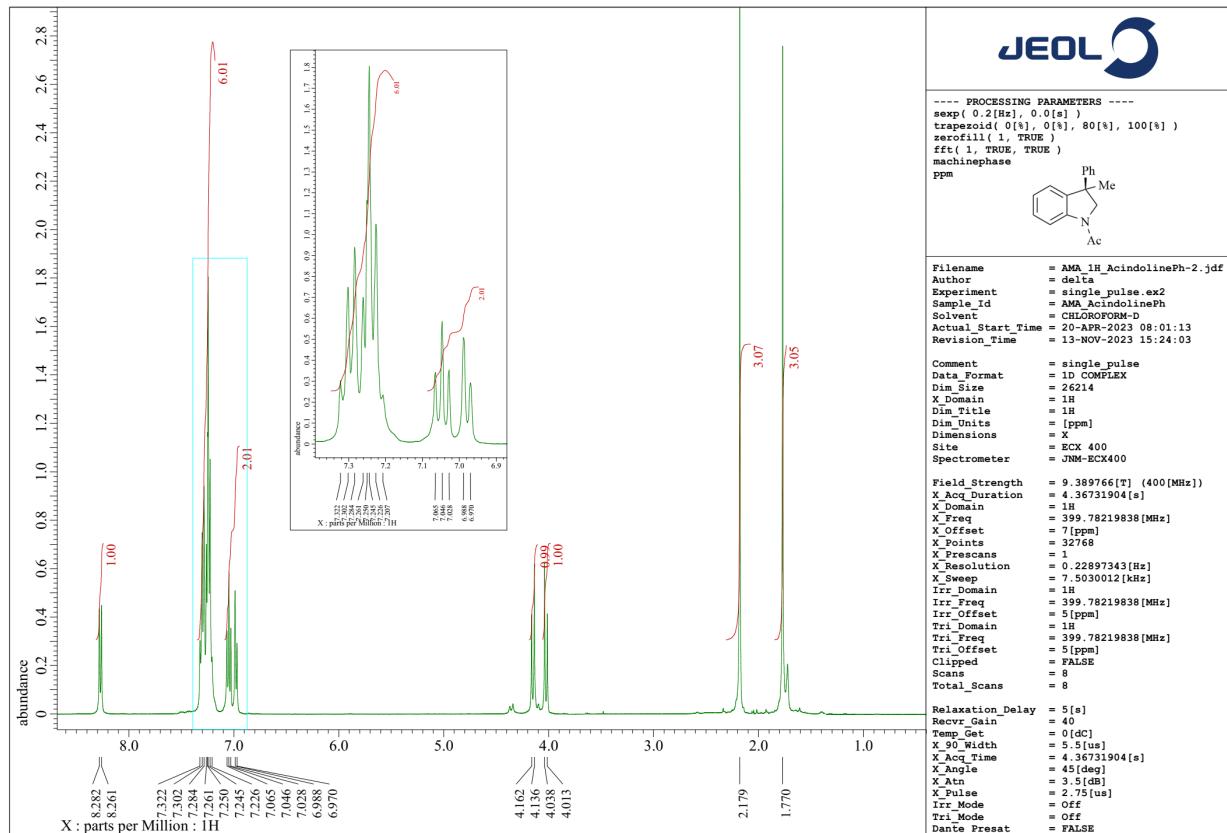
1339 (s), 1281 (s), 1130 (m), 1099 (m), 1057 (m), 1026 (s), 942 (w), 922 (w), 817 (s), 764 (vs), 752 (vs), 698 (vs), 556 (s). **MS, *m/z* (*I*_{rel}, %):** 251 [M]⁺ (44), 209 (8), 195 (10), 194 (100), 165 (10), 132 (8), 91 (6), 77 (5). APPI-HRMS (*m/z*): calcd. for [C₁₇H₁₇NO+H]⁺ 252.1383; found 252.1385. HPLC (Chiralpak AD-3R, H₂O/MeCN, 0.25 mL/min, λ = 210, 230 nm), retention times: (*R*) (major) 18.9 min, (*S*) (minor) 20.5 min.


1-Benzoyl-3-methyl-3-phenylindoline (2b). The product was purified by column chromatography (eluent CCl₄). Yield: 81 mg (50%), colorless cryst. m.p. 132-133 °C, $[\alpha]_D^{20}$ = 5.54 (*c* 0.33, CHCl₃). **¹H NMR (400 MHz, CDCl₃) δ :** 1.74 (s, 3H, CH₃), 4.05 (s, 1H, CH₂), 4.23 (s, 1H, CH₂), 7.03-7.05 (m, 2H, aromatic), 7.20-7.32 (m, 6H, aromatic), 7.39-7.51 (m, 6H, aromatic). **IR (ν /cm⁻¹):** 2962 (w), 2924 (w), 2885 (w), 1720 (m), 1647 (vs), 1597 (m), 1477 (s), 1446 (m), 1373 (vs), 1334 (m), 1284 (m), 1257 (m), 1157 (m), 1072 (m), 1049 (w), 1026 (m), 925 (w), 864 (w), 790 (m), 752 (s), 649 (vs), 663 (s), 609 (m), 578 (m). **MS, *m/z* (*I*_{rel}, %):** 313 [M]⁺ (50), 298 (10), 281 (8), 207 (18), 165 (8), 130 (8), 105 (100), 91 (8), 77 (38). APPI-HRMS (*m/z*): calcd. for [C₂₂H₁₉NO+H]⁺ 314.1539; found 314.1532. HPLC (Chiralpak AD-3, hexane/2-propanol, 95:5; 1.2 mL/min; λ = 230, 254 nm), retention times: (*S*) (minor) 24.1 min, (*R*) (major) 35.9 min.


3-Methyl-3-phenyl-1-tosylindoline (2c). The product was purified by column chromatography (eluent CCl₄:CHCl₃ (5%)). Yield: 115 mg (61%), colorless cryst., m.p. 119-120 °C. **¹H NMR (400 MHz, CDCl₃) δ :** 1.55 (s, 3H, CH₃), 2.35 (s, 3H, CH₃), 3.95 (d, 1H, *J* 10.6 Hz, CH₂), 4.05 (d, 1H, *J* 10.6 Hz, CH₂), 6.88-7.01 (m, 4H, aromatic), 7.14-7.28 (m, 6H, aromatic), 7.62 (d, 2H, *J* 7.6 Hz, aromatic), 7.73 (d, 1H, ³*J* 7.6 Hz, aromatic). **¹³C NMR (100.5 MHz, CDCl₃) δ :** 21.6 (CH₃), 27.2 (CH₃), 48.0 (C-3), 66.0 (C-2), 114.9 (CH_{Ar}), 124.1 (CH_{Ar}), 124.8 (CH_{Ar}), 126.5 (4CH_{Ar}), 127.3 (2CH_{Ar}), 128.4 (2CH_{Ar}), 129.7 (2CH_{Ar}), 134.0 (C_{Ar}), 139.6 (C_{Ar}), 141.5 (C_{Ar}), 144.1 (C_{Ar}), 146.5 (C_{Ar}). **IR (ν /cm⁻¹):** 2963 (w), 1593 (w), 1493 (w), 1474 (w), 1458 (w), 1377 (w), 1354 (s), 1165 (vs), 1111 (w), 1088 (m), 1022 (m), 976 (m), 906 (w), 814 (m), 768 (vs), 729 (s), 706 (s), 660 (vs), 629 (m), 575 (vs), 540 (vs). **MS, *m/z* (*I*_{rel}, %):** 363 [M]⁺ (50), 348 (20), 281 (16), 253 (10), 209 (20), 208 (60), 207 (100), 193 (26), 165 (18), 155 (10), 130 (28), 115 (15), 91 (55). APPI-HRMS (*m/z*): calcd. for [C₂₂H₂₁NO₂S+H]⁺ 364.1366; found 364.1361. HPLC (Chiralpak AD-3, hexane/2-propanol, 97:3; 1.2 mL/min; λ = 230, 254 nm), retention times: first enantiomer 16.9 min, second enantiomer 19.6 min.

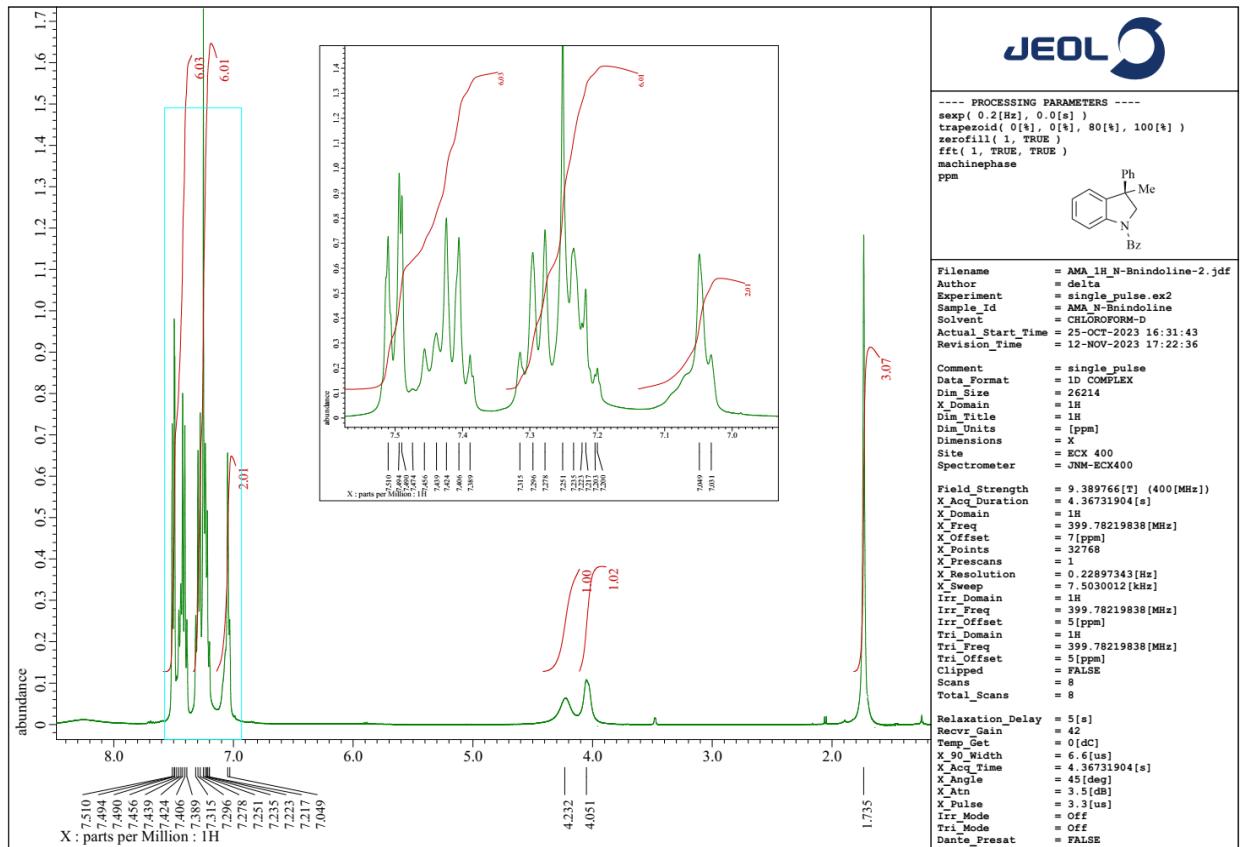

3,5-Dimethyl-3-phenyl-2,3-dihydrobenzofuran (2d). The product was purified by column chromatography (eluent petroleum ether). Yield: 61 mg (53%), yellow oil. **¹H NMR (400 MHz, CDCl₃) δ :** 1.75 (s, 3H, CH₃), 2.28 (s, 3H, CH₃), 4.45 (d, 1H, *J* 8.9 Hz, CH₂), 4.58 (d, 1H, *J* 8.9 Hz, CH₂), 6.78-6.83 (m, 2H, aromatic), 6.98-6.99 (m, 1H, aromatic), 7.23-7.32 (m, 5H, aromatic). **¹³C NMR (100.5 MHz, CDCl₃) δ :** 21.0 (CH₃), 26.1 (CH₃), 50.0 (C-3), 86.3 (C-2), 109.5 (CH_{Ar}), 124.7 (CH_{Ar}), 126.7 (3CH_{Ar}), 128.5 (2CH_{Ar}), 128.9 (CH_{Ar}), 130.3 (C_{Ar}), 135.7 (C_{Ar}), 146.5 (C_{Ar}), 157.7 (C_{Ar}). **IR (ν /cm⁻¹):** 2967 (w), 2878 (w), 1655 (w), 1597 (m), 1489 (vs), 1466 (s), 1447 (s), 1377 (w), 1331 (m), 1277 (m), 1242 (m), 1215 (s), 1153 (m), 1114 (m), 1053 (m), 980 (s), 841 (m), 806 (vs), 764 (vs), 741 (s), 694 (vs), 590 (w), 556 (m). **MS, *m/z* (*I*_{rel}, %):** 224 [M]⁺ (80), 209 (100), 181 (60), 165 (30), 147 (10), 115 (10), 103 (12), 91 (10), 77 (10). Anal. calcd. for C₁₆H₁₆O: C 85.68; H 7.19. Found: C 85.79; H 7.11.

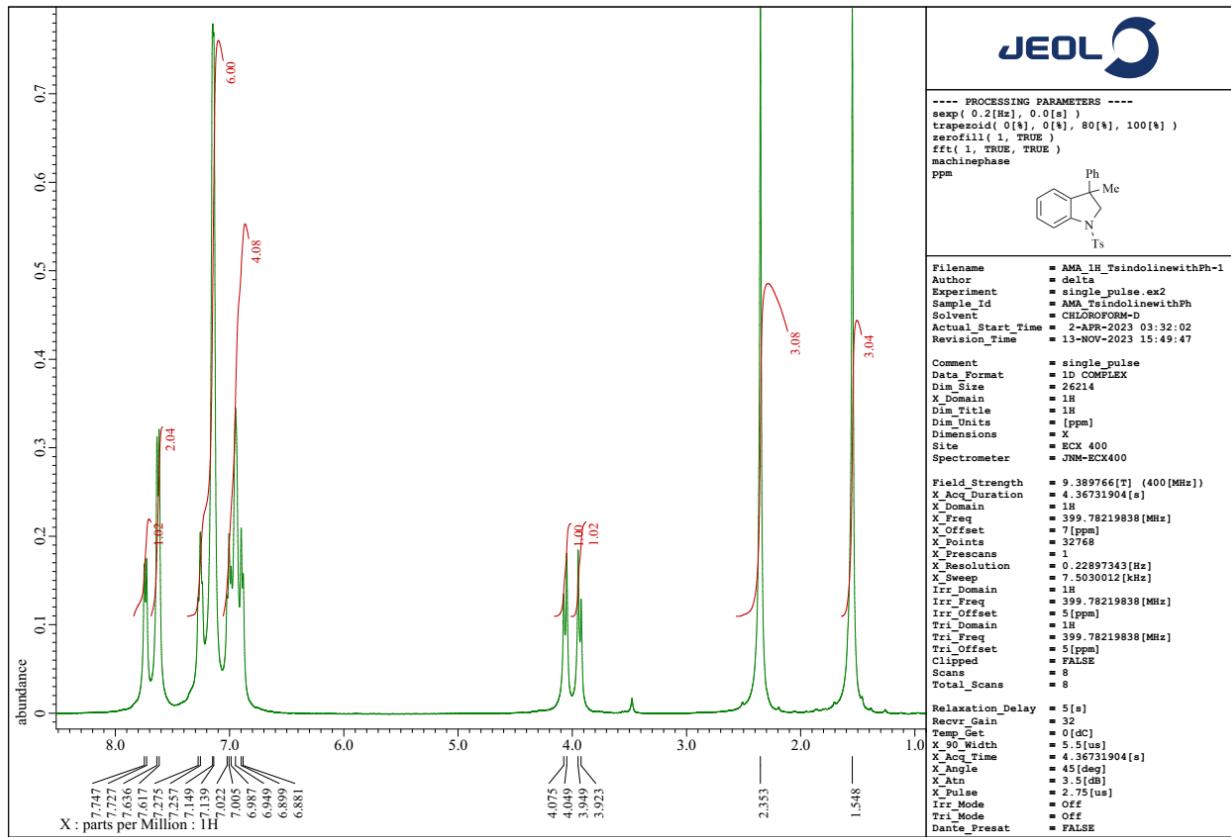
1-Acetyl-3-methyl-3-phenylindolin-2-one (2e). The product was purified by column chromatography (eluent CCl₄:CHCl₃ (5%)). Yield: 65 mg (47%), colorless cryst., m.p. 111-112 °C. **¹H NMR (400 MHz, CDCl₃) δ :** 1.87 (s, 3H, CH₃), 2.64 (s, 3H, CH₃), 7.18-7.20 (m, 1H, aromatic), 7.23-7.33 (m, 6H, aromatic), 7.35-7.39 (m, 1H, aromatic), 8.33 (d, 1H, *J* 8.0 Hz, aromatic). **¹³C NMR (100.5 MHz, CDCl₃) δ :** 24.5 (CH₃), 26.7 (CH₃), 52.6 (C-3), 116.9 (CH_{Ar}), 124.1 (CH_{Ar}), 125.6 (CH_{Ar}), 126.8 (2C, CH_{Ar}), 127.8 (CH_{Ar}), 128.6 (CH_{Ar}), 128.8 (2C, CH_{Ar}), 133.7 (C_{Ar}), 139.6 (C_{Ar}), 140.4 (C_{Ar}), 171.2 (C=O), 180.1 (C=O). **IR (ν /cm⁻¹):** 3005 (w), 2974 (w), 2931 (w), 2851 (w), 1751 (vs), 1709 (vs), 1604 (m), 1493 (m), 1477 (s), 1458 (s), 1442 (s), 1416 (m), 1369 (vs), 1338 (s), 1303 (s), 1269 (vs), 1196 (m), 1168 (vs), 1018 (vs), 760 (vs), 729 (vs), 698 (vs), 675 (s), 625 (m), 590 (vs). **MS, *m/z* (*I*_{rel}, %):** 265 [M]⁺ (22), 223 (100), 208 (98), 193 (40), 180 (16), 165 (12), 152 (10), 116 (12), 77 (10). APPI-HRMS (*m/z*): calcd. for [C₁₇H₁₅NO₂-CH₃CO+2H]⁺ 224.1070; found 224.1066. HPLC (Chiralpak AD-3, hexane/2-propanol, 98:2; 1.2 mL/min; λ = 230, 254 nm), retention times: first enantiomer 7.4 min, second enantiomer 8.1 min.

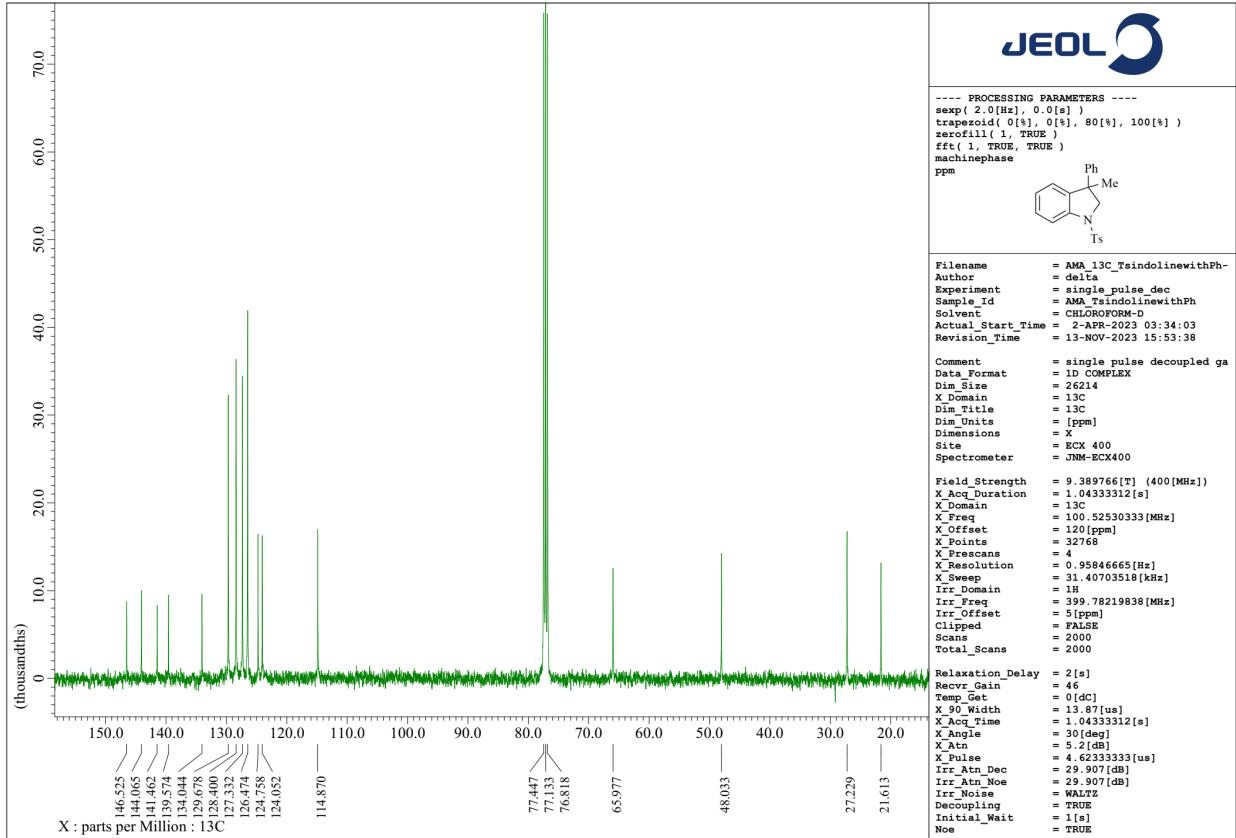

3-Methyl-3-phenyl-1-tosylindolin-2-one (2f). The product was purified by column chromatography (eluent CCl₄). Yield: 98 mg (50%), colorless cryst., m.p. 111-112 °C. **¹H NMR (400 MHz, CDCl₃) δ :** 1.69 (s, 3H, CH₃), 2.36 (s, 3H, CH₃), 7.01-7.04 (m, 2H, aromatic), 7.09-7.11 (m, 1H, aromatic), 7.17-7.21 (m, 4H, aromatic), 7.26 (d, 2H, *J* 8.2

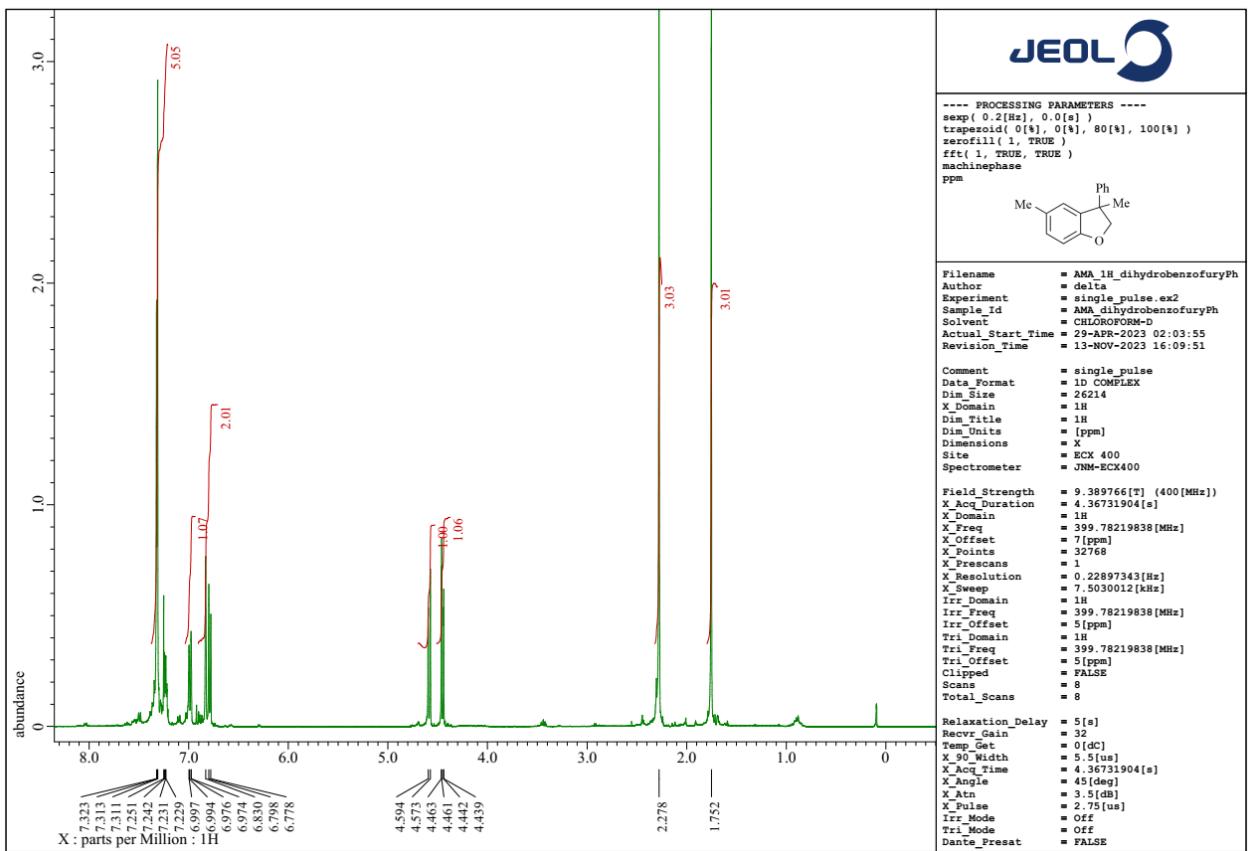

Hz, aromatic), 7.35-7.39 (m, 1H, aromatic), 7.93 (d, 2H, *J* 8.5 Hz, aromatic), 8.01 (d, 1H, CH, *J* 8.2 Hz, aromatic). ¹³C NMR (100.5 MHz, CDCl₃) δ : 21.8 (CH₃), 23.8 (CH₃), 52.5 (C), 114.1 (CH_{Ar}), 124.6 (CH_{Ar}), 125.3 (CH_{Ar}), 126.5 (2C, CH_{Ar}), 127.7 (CH_{Ar}), 127.8 (2C, CH_{Ar}), 128.7 (2C, CH_{Ar}), 128.9 (CH_{Ar}), 129.8 (2C, CH_{Ar}), 133.8 (C_{Ar}), 135.1 (C_{Ar}), 138.5 (C_{Ar}), 139.9 (C_{Ar}), 145.6 (C_{Ar}), 177.6 (C=O). IR (ν/cm⁻¹): 3080 (w), 3020 (w), 2980 (w), 2924 (w), 1755 (s), 1597 (m), 1462 (m), 1369 (s), 1230 (s), 1161 (s), 1087 (m), 1060 (s), 960 (m), 813 (m), 783 (m), 759 (s), 690 (s), 655 (s), 563 (vs), 543 (vs). APPI-HRMS (m/z): calcd for [C₂₂H₁₉NO₃S+H]⁺ 378.1158; found 378.1158. HPLC (Chiralpak AD-3, hexane/2-propanol, 97.5:2.5; 1.2 mL/min; λ = 230, 254 nm), retention times: first enantiomer 27.4 min, second enantiomer 35.2 min.

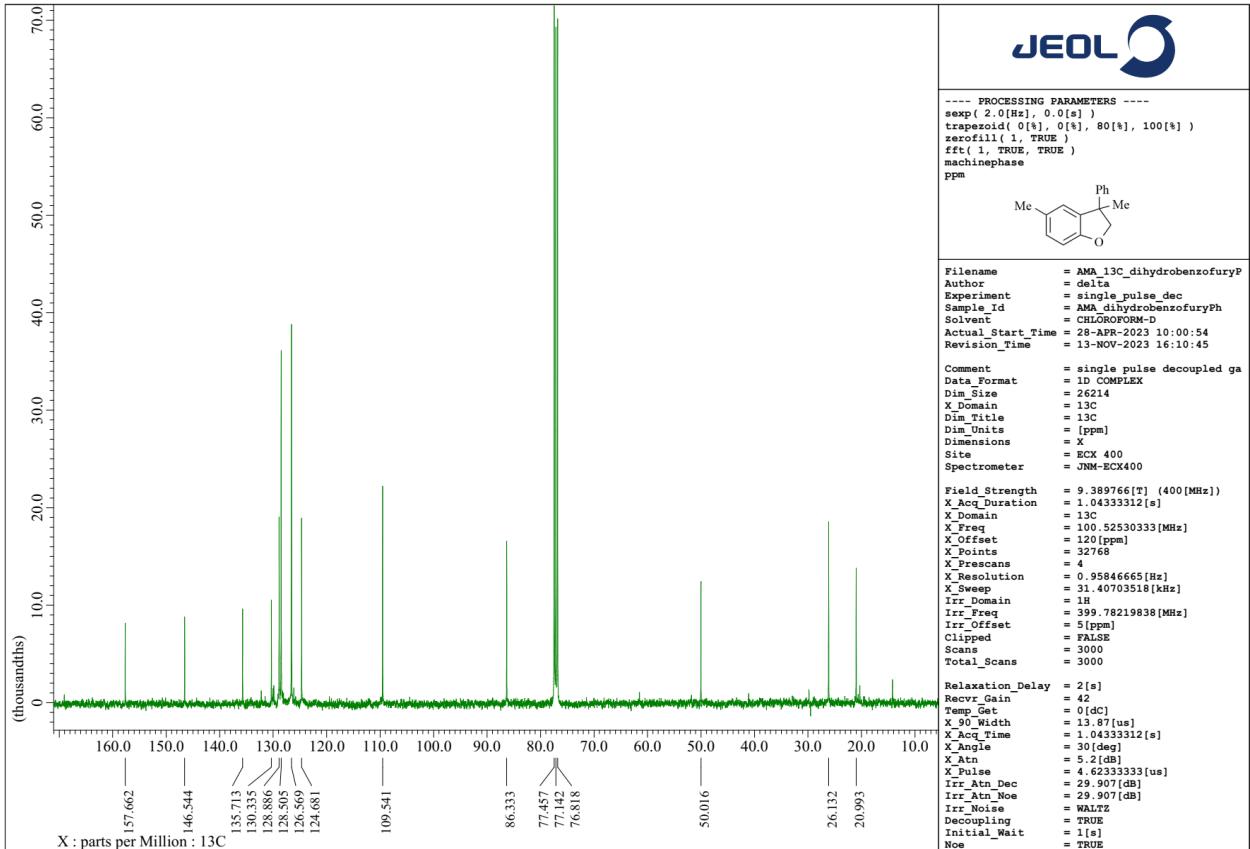
3. Copies of NMR spectra for compounds 2a–f

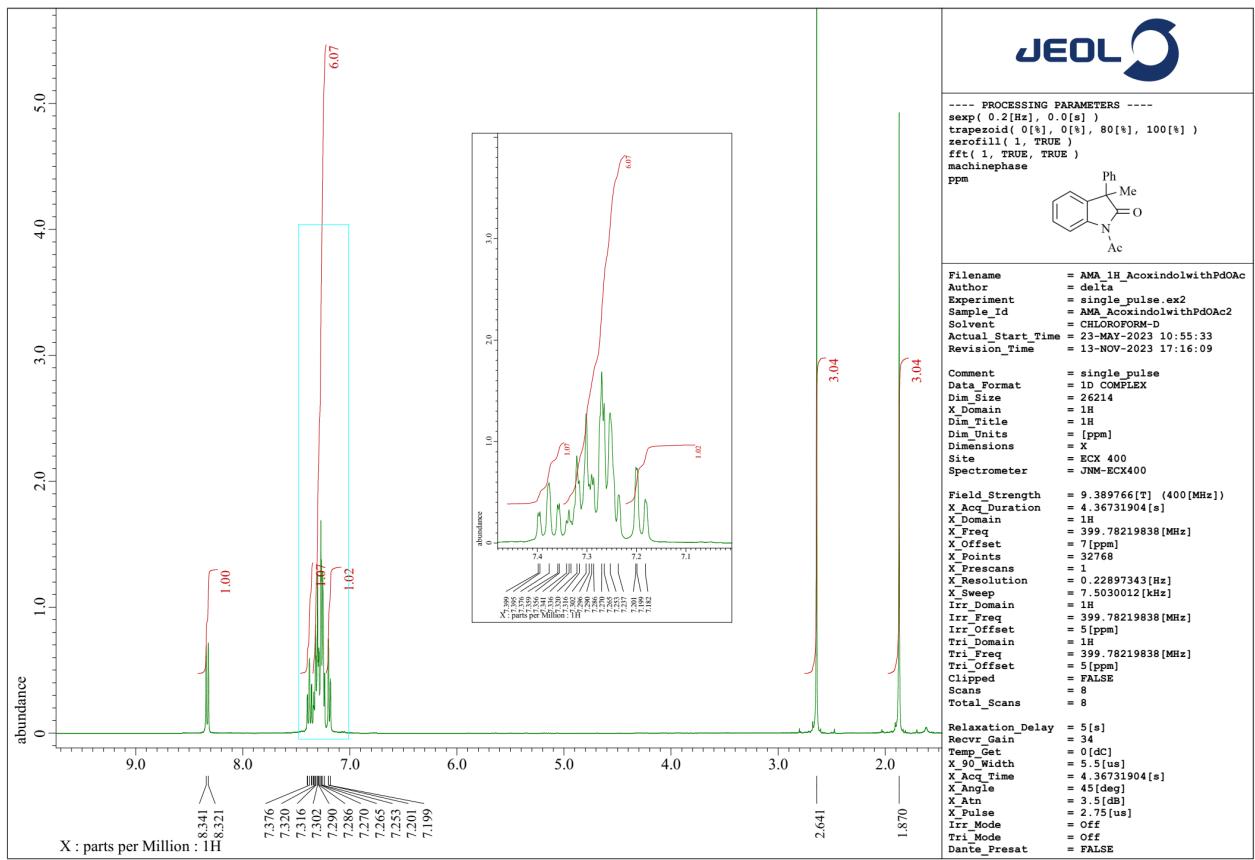

¹H NMR spectrum of 1-acetyl-3-methyl-3-phenylindoline (**2a**) in CDCl₃

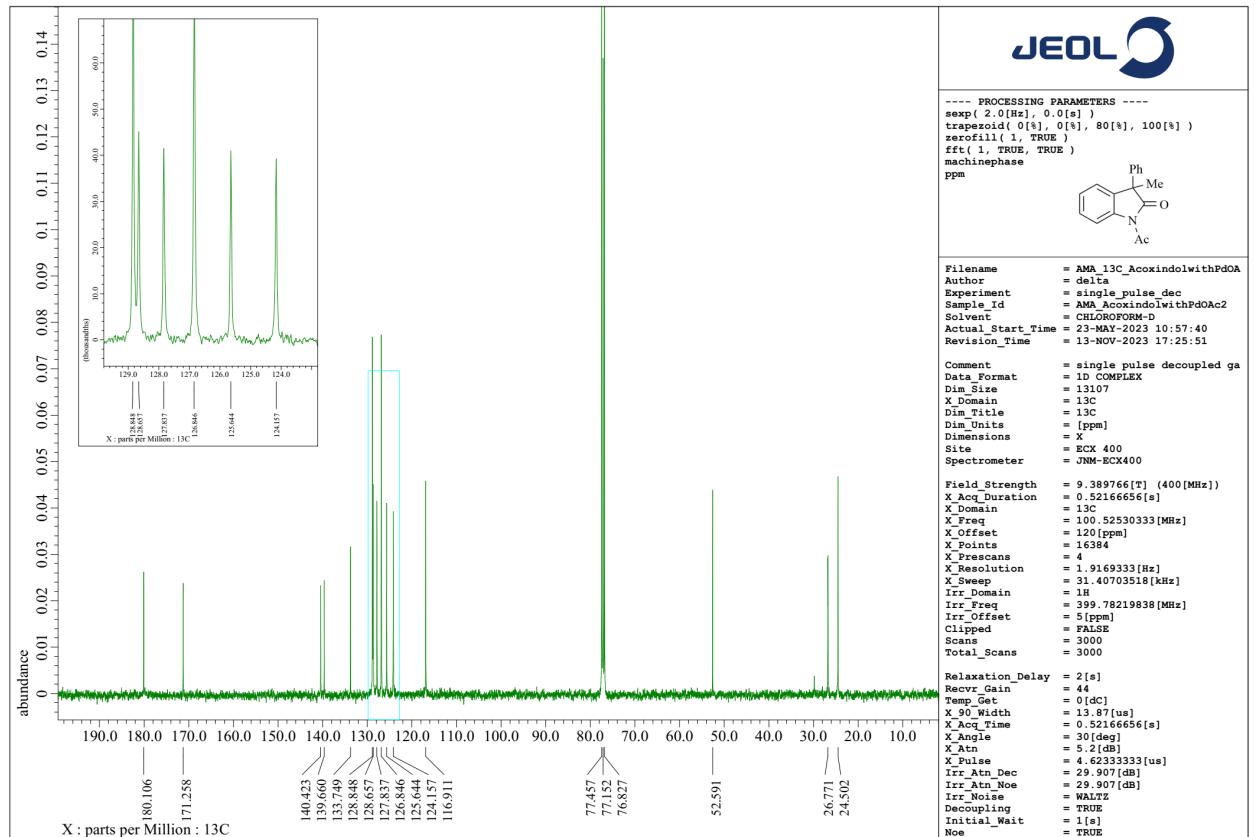

¹³C NMR spectrum of 1-acetyl-3-methyl-3-phenylindoline (**2a**) in CDCl₃

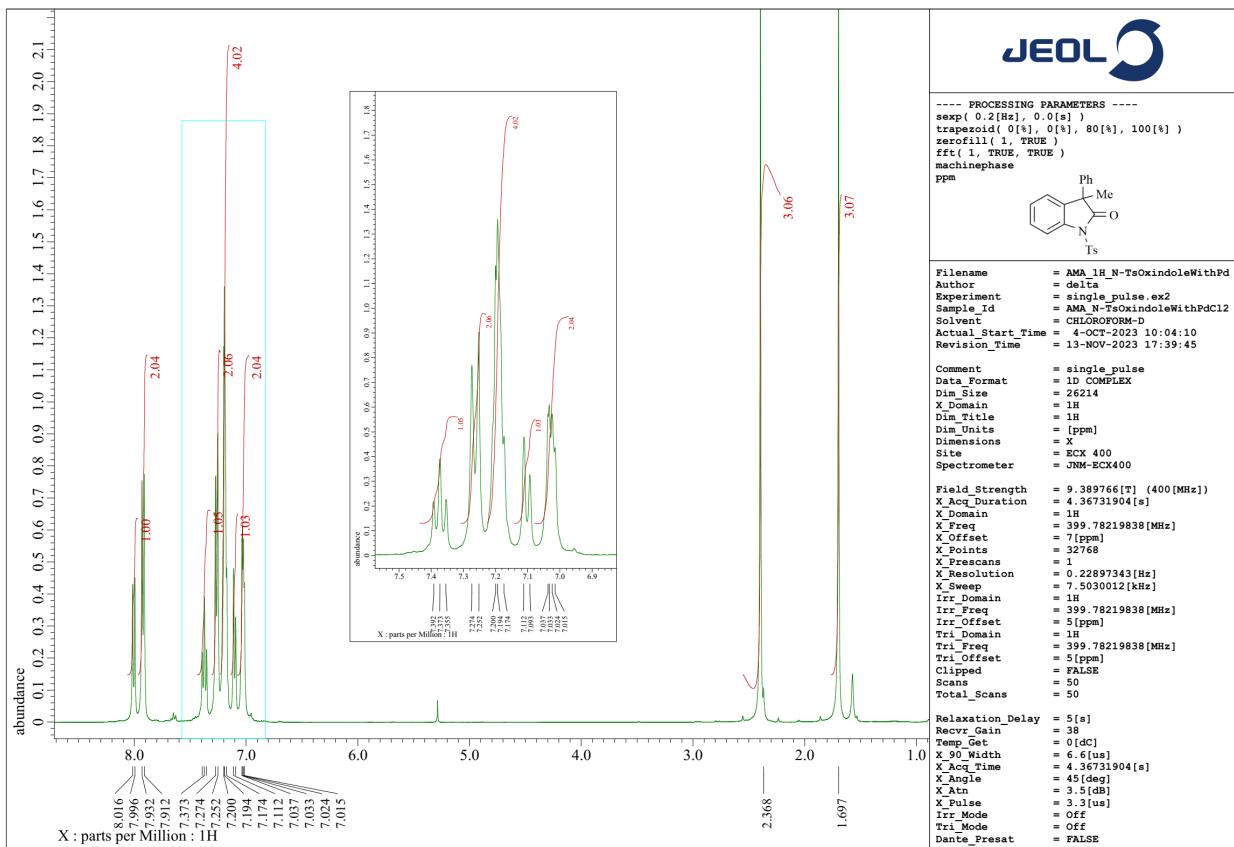

¹H NMR spectrum of 1-benzoyl-3-methyl-3-phenylindoline (**2b**) in CDCl₃

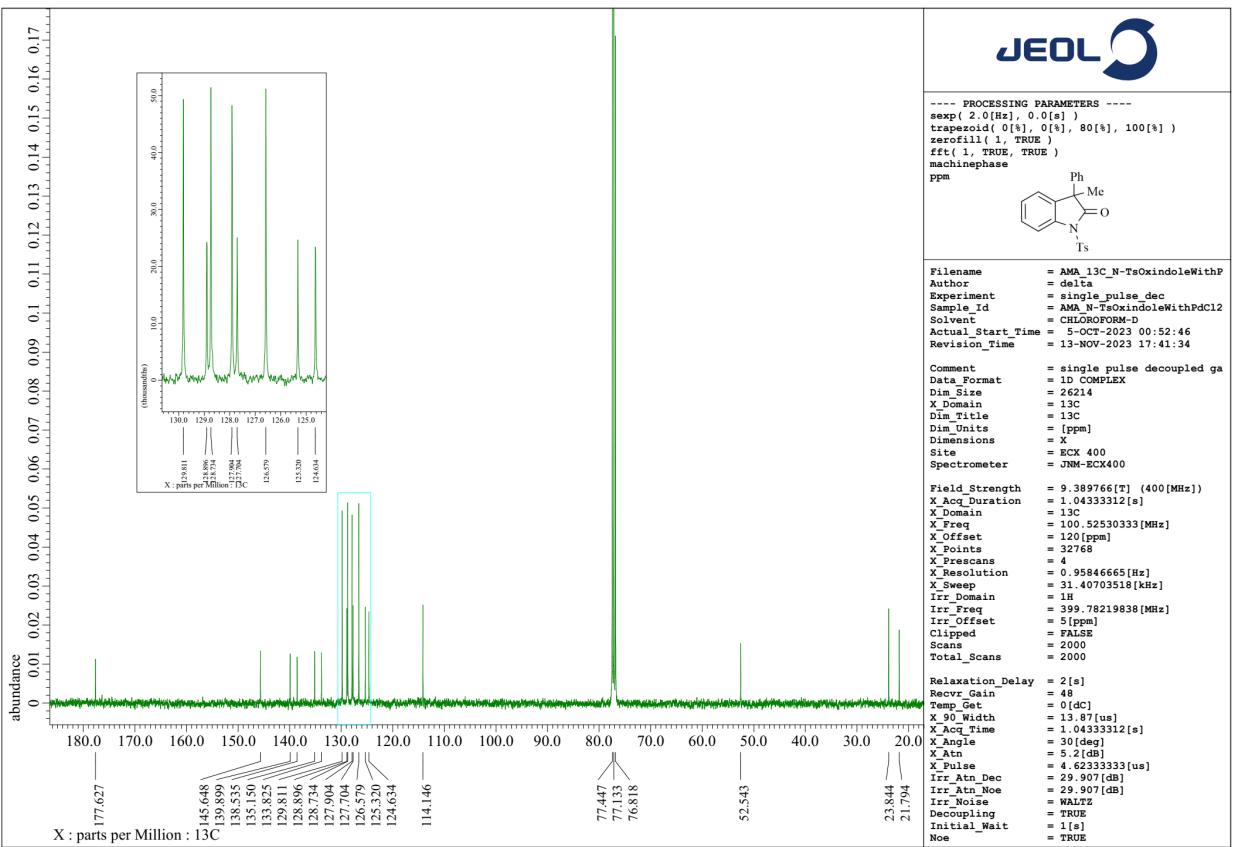

¹H NMR spectrum of 3-methyl-3-phenyl-1-tosylindoline (**2c**) in CDCl₃


¹³C NMR spectrum of 3-methyl-3-phenyl-1-tosylindoline (**2c**) in CDCl₃

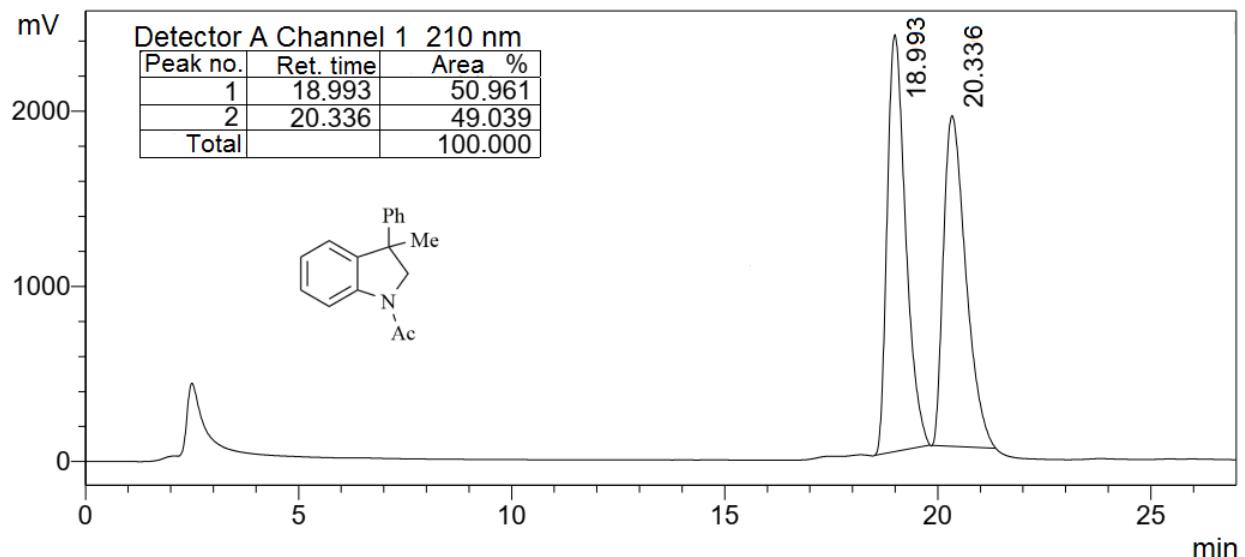

¹H NMR spectra of 3,5-dimethyl-3-phenyl-2,3-dihydrobenzofuran (**2d**) in CDCl₃


¹³C NMR spectrum of 3,5-dimethyl-3-phenyl-2,3-dihydrobenzofuran (**2d**) in CDCl₃

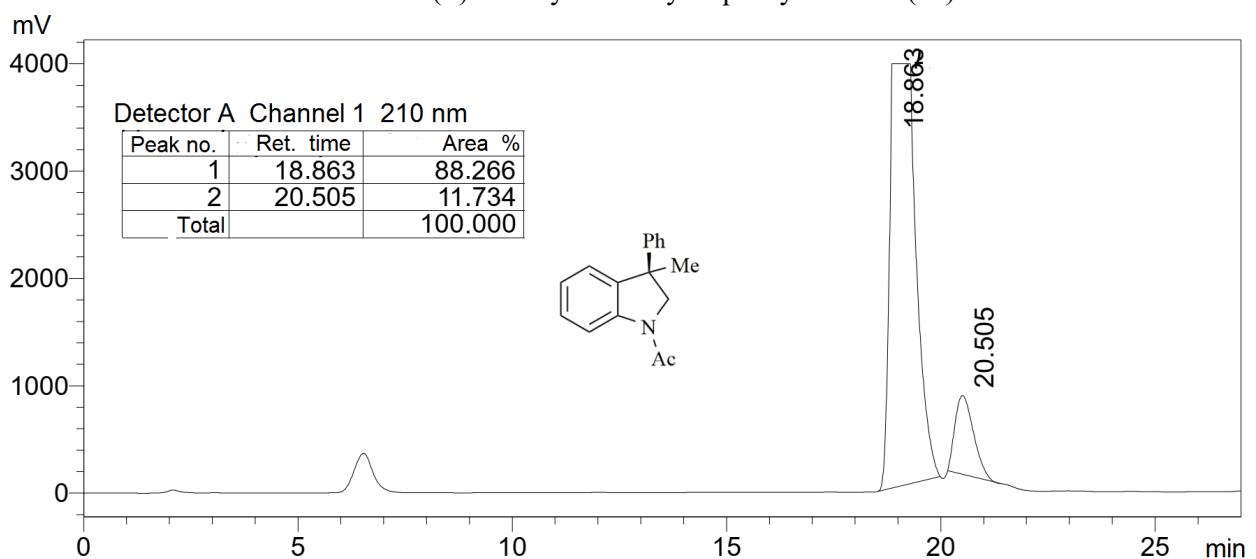

¹H NMR spectrum of 1-acetyl-3-methyl-3-phenylindolin-2-one (**2e**) in CDCl₃


¹³C NMR spectrum of 1-acetyl-3-methyl-3-phenylindolin-2-one (**2e**) in CDCl₃

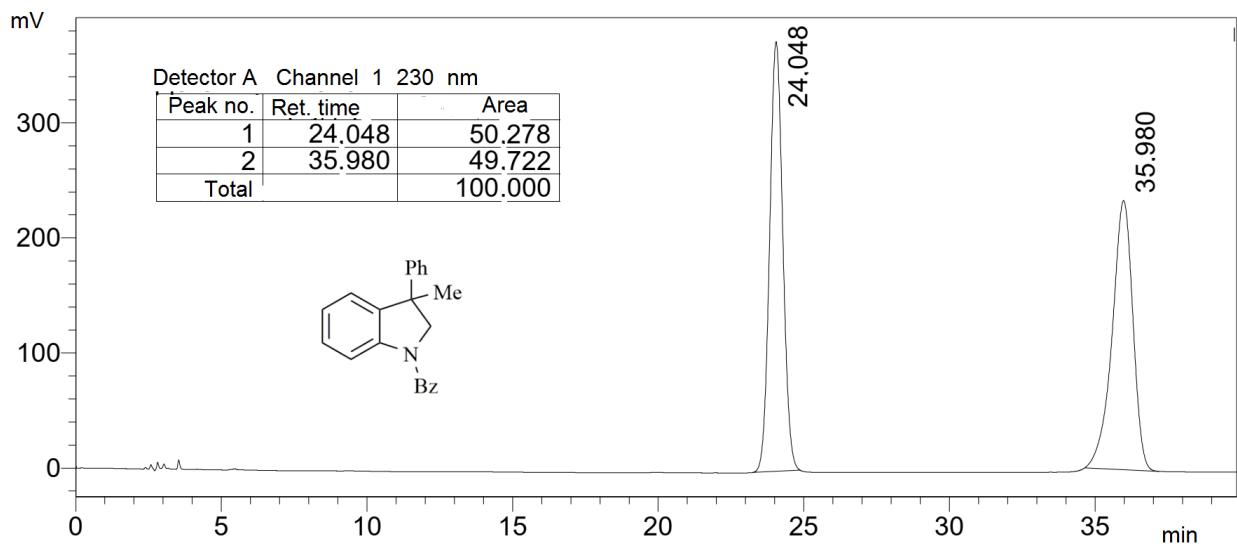
¹H NMR spectrum of 3-methyl-3-phenyl-1-tosylindolin-2-one (**2f**) in CDCl₃

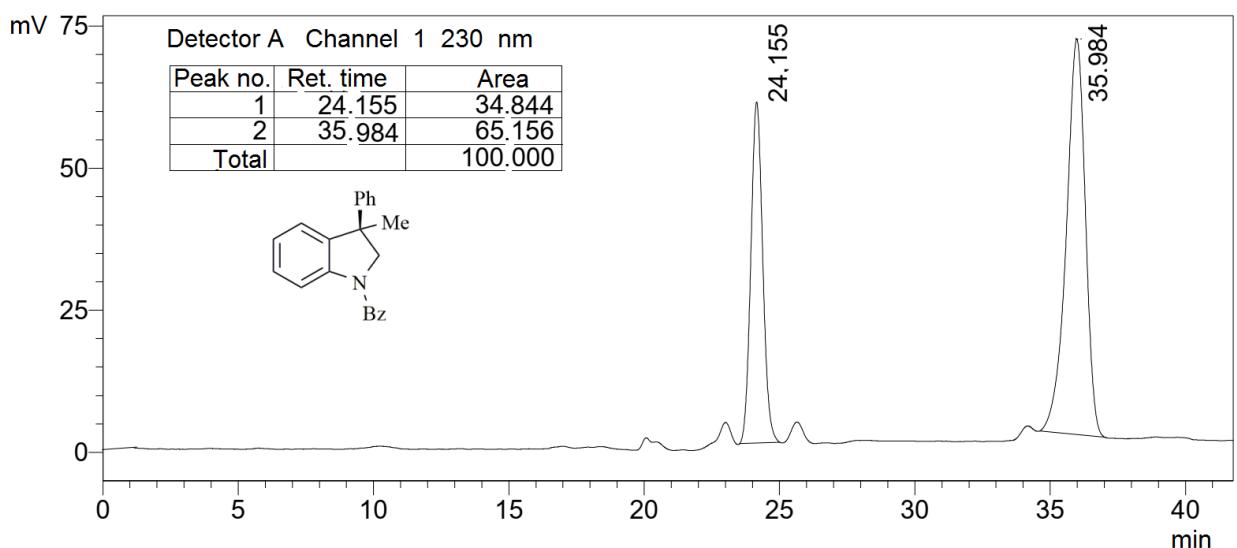


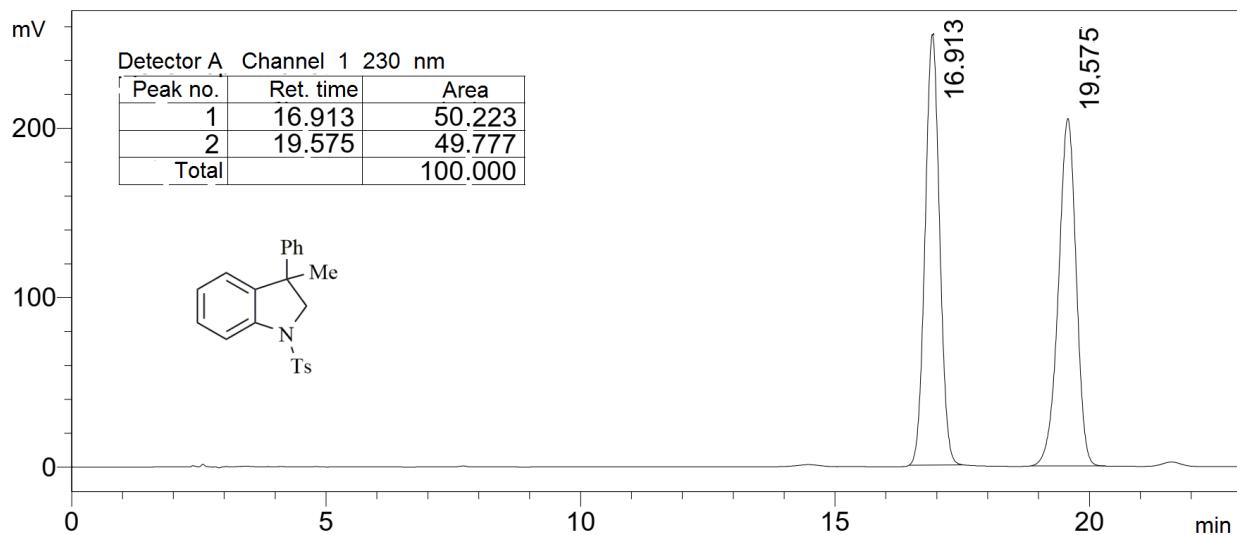
¹³C NMR spectrum of 3-methyl-3-phenyl-1-tosylindolin-2-one (**2f**) in CDCl₃

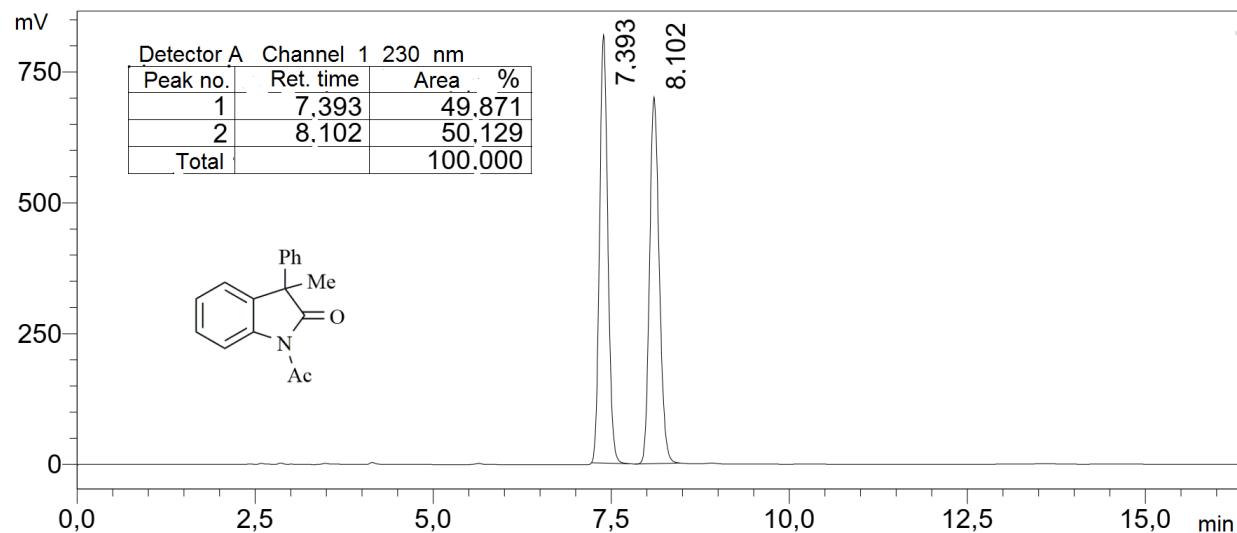


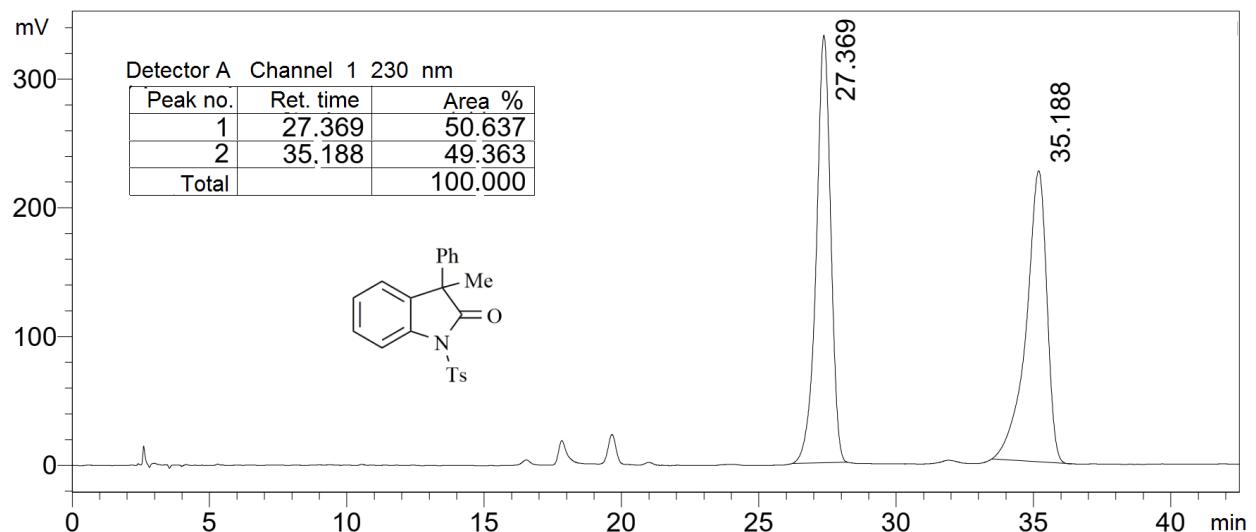
4. Copies of HPLC chromatograms for compounds 2a,b,c,e,f


HPLC for racemic 1-acetyl-3-methyl-3-phenylindoline (**2a**)

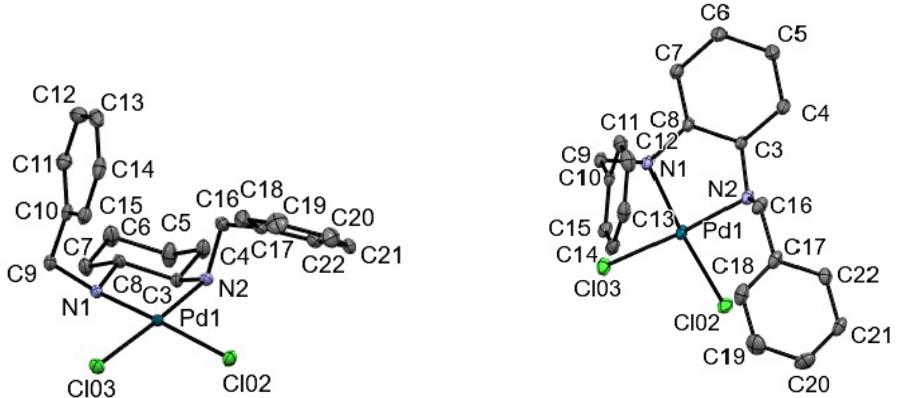

HPLC for (*R*)-1-acetyl-3-methyl-3-phenylindoline (**2a**)


HPLC for racemic 1-benzoyl-3-methyl-3-phenylindoline (**2b**)


HPLC for enantiomerically enriched 1-benzoyl-3-methyl-3-phenylindoline (**2b**)


HPLC for racemic 3-methyl-3-phenyl-1-tosylindoline (**2c**)

HPLC for racemic 1-acetyl-3-methyl-3-phenylindolin-2-one (**2e**)


HPLC for racemic 3-methyl-3-phenyl-1-tosylindolin-2-one (**2f**)

5. Crystal data and structure refinement for **2b**, **5**

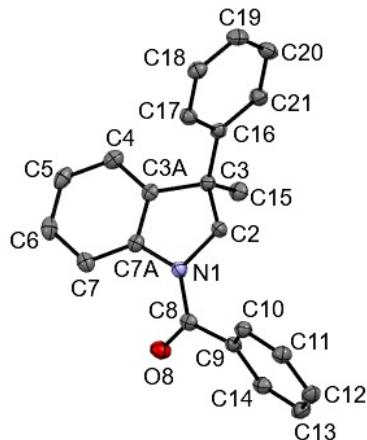

The single crystal of compounds **5** and **2b** were prepared from CHCl₃/MeOH and cyclohexane solutions respectively. X-ray data for compounds **5** and **2b** were obtained with a Bruker D8 QUEST diffractometer. CCDC 2307155 (compound **5**) and CCDC 2307152 (compound **2b**) deposits contain the supplementary crystallographic data for this article. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via <https://www.ccdc.cam.ac.uk>

Table S1. Crystallographic data for compound **5**

CCDC	
Empirical formula	C ₂₀ H ₂₆ Cl ₂ N ₂ Pd
Formula weight	471.73
Temperature/K	102(2)
Wavelength	0.71073 (MoK\(\alpha\))
Crystal system	orthorhombic
Space group	P 2 ₁ 2 ₁ 2 ₁
Unit cell dimensions:	
a/\(\AA\)	10.3396(12)
b/\(\AA\)	10.8284(11)
c/\(\AA\)	18.9391(19)
\(\alpha\)/°	90
\(\beta\)/°	90
\(\gamma\)/°	90
Volume/\(\AA\) ³	2120.4(4)
Z	4
Absorption coefficient/ mm ⁻¹	1.132
Reflections collected	69147
R indices (all data)	0.0239

Table S2. Crystallographic data for compound **2b**

CCDC	
Empirical formula	C ₂₂ H ₁₉ NO
Formula weight	313.38
Temperature/K	102(2)
Wavelength	0.71073 (MoK\(\alpha\))
Crystal system	orthorhombic
Space group	P b c a
Unit cell dimensions:	
a/\(\text{\AA}\)	8.3006(9)
b/\(\text{\AA}\)	18.1475(19)
c/\(\text{\AA}\)	21.510(2)
\(\alpha\)/°	90
\(\beta\)/°	90
\(\gamma\)/°	90
Volume/\(\text{\AA}^3\)	3240.2(6)
Z	8
Absorption coefficient/ mm ⁻¹	0.078
Reflections collected	83254
R indices (all data)	0.0618

6. Calculation of specific rotation

The absolute (*R*)-configuration of the predominant enantiomer in compound **2a** was assumed based on correlation of computed specific rotation with experimental data. The optimization of geometry and calculation of specific rotation were performed using the B3LYP functional and the 6-311++G(2d,2p) basis set.^{S13-S16} The calculation results and the experimental data obtained are presented in the table S1.

Table S3. Experimental and calculated values for the specific rotation of **2a**

λ , nm	Calculated $[\alpha]^{20}$ for (<i>S</i>)-isomer	Calculated $[\alpha]^{20}$ for (<i>R</i>)-isomer	Experimental $[\alpha]^{20}$ for 2a with 35% ee	Experimental $[\alpha]^{20}$ for 2a with correction for optical purity
436	+21.22	-21.22	-8.56	-24.5
546	+10.89	-10.89	-7.52	-21.5
589	+9.03	-9.03	-6.84	-19.5
633	+7.65	-7.65	-6.00	-17.1

References

S1. D.-H. Fu, M. Li, S.-Y. Zhang, J.-F. Li, B. Sha, L. Wang, Y.-B. Zhang, P. Chen and T. Hu, *Bioorg. Chem.* 2019, **92**, 103190

S2. J. E. Wilson, R. Kurukulasuriya, M. Reibarkh, M. Reiter, A. Zwicker, K. Zhao, F. Zhang, R. Anand, V. J. Colandrea, A.-M. Cumiskey, A. Crespo, R. A. Duffy, B. A. Murphy, K. Mitra, D. G. Johns, J. L. Duffy and P. Vachal, *ACS Med. Chem. Lett.*, 2016, **7**, 261.

S3. S. Zeeli, T. Weill, E. Finkin-Groner, C. Bejar, M. Melamed, S. Furman, M. Zhenin, A. Nudelman and M. Weinstock, *J. Med. Chem.*, 2018, **61**, 4004.

S4. A. Rakhit, M. E. Hurley, V. Tipnis, J. Coleman, A. Rommel and H. R. Brunner, *J. Clin. Pharmacol.*, 1986, **26**, 156.

S5. P. Diaz, S. S. Phatak, J. Xu, F. R. Fronczek, F. Astruc-Diaz, C. M. Thompson, C. N. Cavasotto and M. Naguib, *ChemMedChem*, 2009, **4**, 1615.

S6. L. Ma, L. Tang and Q. Yi, *Front. Pharmacol.*, 2019, **10**, 97.

S7. A. N. Reznikov, M. A. Ashatkina, S. Yu. Vostruhina and Yu. N. Klimochkin, *Tetrahedron Lett.*, 2023, **116**, 154322.

S8. N. Duguet, A. Donaldson, S. M. Leckie, J. Douglas, P. Shapland, T. B. Brown, G. Churchill, A. M. Z. Slawin and A. D. Smith, *Tetrahedron: Asymmetry*, 2010, **21**, 582.

S9. A. A. Tsygankov, M.-S. Chun, A. D. Samoylova, S. Kwon, Y. M. Kreschenova, S. Kim, E. Shin, J. Oh, T. V. Strelkova, V. S. Kolesov, F. I. Zubkov, S. E. Semenov, I. V. Fedyanin and D. Chusov, *Synlett*, 2017, **28**, 615.

S10. A. N. Reznikov, L. E. Kapranov, V. V. Ivankina, A. E. Sibiryakova, V. B. Rybakov and Yu. N. Klimochkin, *Helv. Chim. Acta*, 2018, **101**, e1800170.

S11. M. Pérez-Gómez and J. A. García-López, *Angew. Chem.*, 2016, **128**, 14601.

S12. C. Liu, Y. Li, W.-Y. Shi, Y.-N. Ding, N. Zheng, H.-C. Liu and Y.-M. Liang, *Org. Lett.*, 2021, **23**, 4311.

S13. P. J. Stephens, F. J. Devlin, J. R. Cheeseman, M. J. Frisch and C. Rosini, *Org. Lett.*, 2002, **4**, 4595.

S14. D. M. McCann, P. J. Stephens and J. R. Cheeseman, *J. Org. Chem.*, 2004, **69**, 8709.

S15. E. Giorgio, R. G. Viglione, R. Zanasi and C. Rosini, *J. Am. Chem. Soc.*, 2004, **126**, 12968.

S16. D. M. McCann and P. J. Stephens, *J. Org. Chem.*, 2006, **71**, 6074.