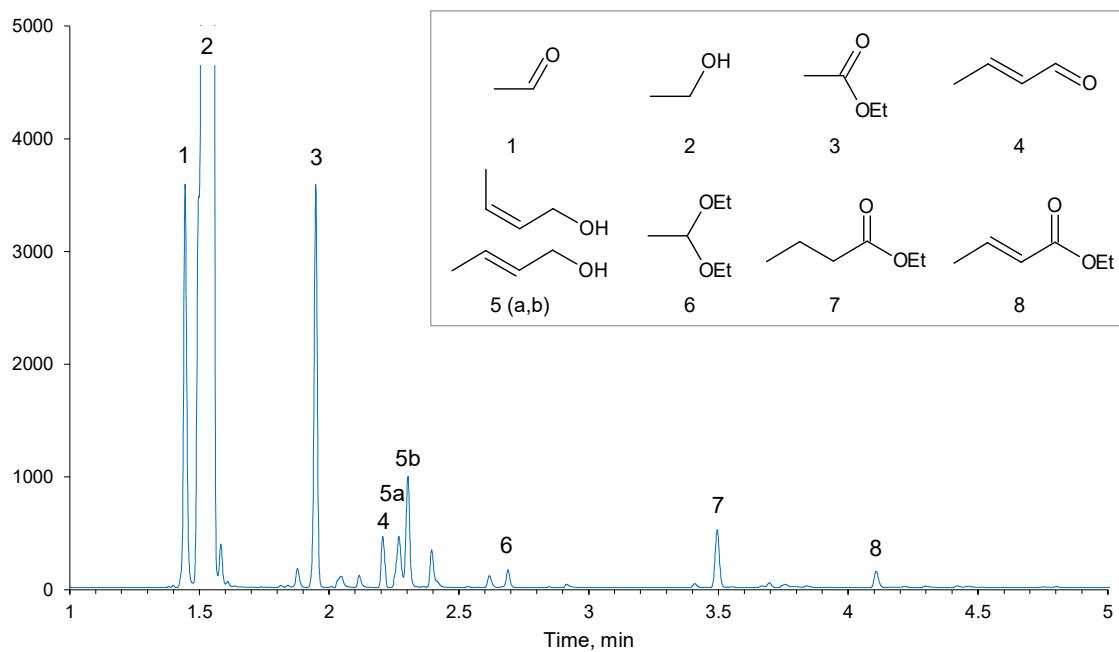


Conversion of ethanol over calcium stannate catalyst under supercritical conditions

Tatiana V. Bogdan, Aleksey E. Koklin, Nikolay V. Mashchenko and Viktor I. Bogdan

Catalyst synthesis


The catalyst was synthesized according to Eqs:

To obtain $\text{CaSn}(\text{OH})_6$, 40 ml of NaOH solution (5.8 g in 50 ml of distilled water) was slowly added dropwise to an equimolar solution of $\text{Ca}(\text{NO}_3)_2 \cdot 4\text{H}_2\text{O}$ (5.71 g) and $\text{SnCl}_4 \cdot 5\text{H}_2\text{O}$ (8.48 g) in distilled water (50 ml) with vigorous stirring at room temperature. The resulting precipitate was stirred for 1 hour and kept for 24 hours. Then the precipitate was washed 3 times by resuspension in distilled water (3×100 ml) to remove chloride ions. The resulting $\text{CaSn}(\text{OH})_6$ precipitate was dried in air at $120 \text{ }^\circ\text{C}$ for 8 hours. At the second stage, $\text{CaSn}(\text{OH})_6$ was calcined in a muffle furnace in air at a temperature of 450 or $750 \text{ }^\circ\text{C}$ for 4 hours; the samples are designated CaSnO_3 and $\text{CaSnO}_3\text{-750}$, respectively.

Catalytic tests

Catalytic tests were carried out in a stainless steel flow-type tubular reactor (internal diameter of 4 mm). A catalyst loading 0.20 g (particle size 0.14–0.25 mm) was placed in the center of the reactor, and the remaining volume was filled with quartz sand. Ethanol (rectified) was used as a substrate. The substrate was supplied by a high-pressure liquid pump at a rate of $0.20 \text{ ml} \cdot \text{min}^{-1}$, which corresponds to $47 \text{ ml} \cdot \text{h}^{-1} \cdot \text{g}_{\text{cat}}^{-1}$. The reactor was heated when the substrate was supplied. The products were collected in a trap, the samples were taken every 30 min. The pressure was maintained by a back-pressure regulator. The duration of the experiments was 4.5 hours. The products were analyzed on a Chromatec Crystal 5000 gas chromatograph with a Thermo TR-5MS capillary column. Identification of products was carried out by gas chromatography-mass spectrometry using a Thermo Focus GC - DSQ II device with a Thermo TR-5MS capillary column.

Figure S1 Chromatogram of products: (1) ethanal, (2) ethanol, (3) ethyl acetate, (4) crotonaldehyde, (5a,b) *cis/trans*-but-2-en-1-ols, (6) 1,1-diethoxyethane, (7) ethyl butanoate, (8) ethyl crotonoate.

Analysis conditions: column – Thermo TR-5MS (30 m × 0.25 mm ID × 0.25 μ m); injector and detector temperature 200 °C; column temperature 40–200 °C, 10 deg min⁻¹; FID detector; carrier gas – helium; split ratio – 100:1; sample size – 0.2 μ l.

Physico-chemical study of the catalysts

X-ray diffraction analysis was carried out using a Rigaku D/Max-2500 diffractometer with CuK α radiation in the 2 θ range of 10–60°. To process X-ray diffraction data, the STOE WinXPow software package and the PDF-2+ and PDF-4+ database were used.