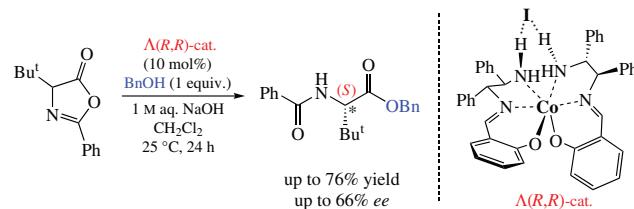


Dynamic kinetic resolution of an azlactone catalyzed by octahedral chiral-at-metal cobalt(III) complexes under phase-transfer alcoholysis


Mikhail A. Emelyanov,^a Evgeniy V. Rozhkov,^{a,b} Victor I. Maleev^a and Vladimir A. Larionov^{*a}

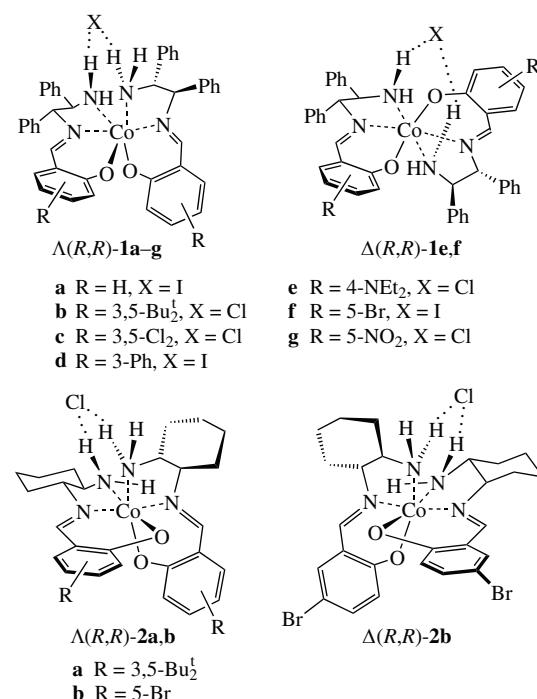
^a A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119334 Moscow, Russian Federation. E-mail: larionov@ineos.ac.ru

^b Higher Chemical College of the Russian Academy of Sciences, D. I. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russian Federation

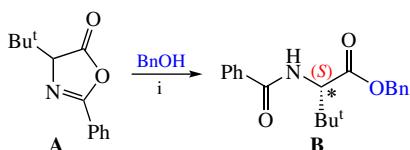
DOI: 10.1016/j.mencom.2024.02.015

A family of well-defined octahedral cationic chiral-at-cobalt(III) catalysts based on (R,R)-1,2-cyclohexanediamine and (R,R)-1,2-diphenylethylenediamine has been examined in the dynamic kinetic resolution of an azlactone derived from N-benzoyl-*tert*-leucine. The reactions catalyzed by 10 mol % of Co^{III} complexes in the presence of 1 M aqueous NaOH solution under phase-transfer alcoholysis afforded the corresponding benzyl ester of *tert*-leucine with up to 76% yield and up to 66% enantioselectivity (ee).

Keywords: kinetic resolution, azlactone, amino acids, chiral-at-metal, cobalt(III) complexes.


Currently, chiral α -amino acids (α -AAs) play an important role in biochemistry, catalysis, drug design and the pharmaceutical industry.^{1,2} Among the different strategies to generate enantioenriched α -AAs,^{3–6} an asymmetric phase-transfer alkylation of readily available glycine derivatives with alkyl halides in the presence of chiral catalysts is one of the most accessible and convenient approaches.^{7,8} Although this reaction allows one to obtain a diverse range of proteinogenic and unnatural α -AAs, mostly containing linear alkyl substituents,^{7,8} the access to the enantioenriched congested α -AAs with branched or bulky groups at the α -carbon still remains a challenge.⁹ For this purpose, the dynamic kinetic resolution of azlactones under phase-transfer alcoholysis is one of the straightforward protocols.^{10–12}

We have previously introduced a new class of stereochemically inert cationic chiral-at-metal Co^{III} complexes **1**, **2** (Figure 1) as readily available and robust hydrogen bond donor phase-transfer ‘organocatalysts in disguise’¹³ for the asymmetric alkylation and Michael addition reaction of glycine derivatives with up to 96% enantioselectivity (ee).^{14–17}


Given the importance of the enantiomerically pure bulky α -AAs (in particular, *tert*-leucine is a privileged chiral transient directing ligand in the asymmetric Pd-catalyzed C_{sp^3} -functionalization transformations¹⁸), we report here the preliminary results of the investigation of the well-defined chiral Co^{III} complexes **1**, **2** as phase-transfer catalysts for the dynamic kinetic resolution of an azlactone with benzyl alcohol (Scheme 1).

The studies started with an azlactone **A** derived from N-benzoyl-*tert*-leucine as a model substrate. The reaction conditions reported by Tokunaga *et al.* were used as a standard.¹⁰ The resolution performed in CHCl₃ at 0 °C using a 1 M aqueous solution of NaOH as a base and one equivalent of benzyl alcohol in the presence of the Co^{III} complex $\Delta(R,R)$ -**1a** based on (R,R)-1,2-diphenylethylenediamine

diamine and salicylaldehyde gave the corresponding amino acid derivative **B** in 40% yield with ee of 58% (Table 1, entry 1). The S-configuration of the product was assigned by comparison of HPLC traces with literature data.¹⁰ We then used the complex $\Delta(R,R)$ -**2b**, derived from (R,R)-1,2-cyclohexanediamine and 3,5-di-*tert*-butylsalicylaldehyde, which has previously shown high

Figure 1 Structures of the octahedral chiral-at-metal Co^{III} complexes **1** and **2**.

Scheme 1 Reagents and conditions: i, BnOH (1 equiv.), catalyst (10 mol%), NaOH (1 M aq.), CH₂Cl₂, 25 °C, 24 h.

Table 1 Screening of chiral Co^{III} complexes **1**, **2** and conditions.^a

Entry	Catalyst	Yield (%) ^b	ee (%) ^c
1 ^{d,e}	Λ(R,R)- 1a	40	58
2 ^{d,e}	Λ(R,R)- 2a	13	17
3 ^d	Λ(R,R)- 1a	40	58
4	Λ(R,R)- 1a	60	60
5	Λ(R,R)- 1b	11	50
6	Λ(R,R)- 1c	18	60
7	Λ(R,R)- 1d	26	60
8	Λ(R,R)- 1e	47	43
9	Δ(R,R)- 1e	30	0
10	Λ(R,R)- 1f	31	58
11	Δ(R,R)- 1f	28	30
12	Λ(R,R)- 1g	15	63
13	Λ(R,R)- 2b	40	10
14	Δ(R,R)- 2b	22	10
15 ^f	Λ(R,R)- 1a	10	28
16 ^g	Λ(R,R)- 1a	—	—

^aReaction conditions: azlactone **A** (21.7 mg, 0.1 mmol), catalyst (10 mol%, 0.01 mmol), NaOH (1 M aq., 0.2 ml, 0.2 mmol, 2 equiv.), BnOH (10.3 µl, 0.1 mmol, 1 equiv.), CH₂Cl₂ (0.8 ml), room temperature, 24 h. ^bYields were determined by ¹H NMR analysis using HMDSO as an internal standard. ^cEnantiomeric purity was determined by chiral HPLC analysis using the Chiralcel OD-H column. ^dCHCl₃ was used as a solvent. ^eReaction was performed at 0 °C. ^fEtOH was used instead of BnOH. ^gPrOH was used instead of BnOH.

enantiocontrol in asymmetric alkylation and Michael addition reactions.^{14,15} However, this complex gave the desired product **B** with essentially lower ee (17%) and yield (13%) (entry 2). The reaction carried out at room temperature with the catalyst Λ(R,R)-**1a** provided similar results (entry 3). Changing the solvent to CH₂Cl₂ increased the yield and the enantiocontrol (60% ee) (entry 4).

Next, complexes **1** with electron-donor and acceptor substituents at the different positions in the salicylidene moiety were investigated (entries 5–12). Complexes **1** with Λ-configurations afforded the desired (S)-product **B** with similar ee values (43–64%), while the yields ranged between 11–47% (entries 5–8, 10 and 12).

On the other hand, the Δ-diastereomers of complexes **1e** and **1f** provided the corresponding ester **B** either with very low stereoselectivity (30% ee) or even in racemic form (entries 9 and 11). Notably, we have also observed differences in reaction enantioselectivity depending on the configuration at the metal center of the complexes in other reactions.¹⁷ Interestingly, in the case of both the Λ- and Δ-complexes of **2b**, the formation of the same enantiomer of the product **B** was observed with 10% ee (entries 13 and 14). It is of note that the resolution of an azlactone **A** with ethanol gave the ethyl ester with low enantioselectivity (28%) and only 10% yield after 24 h (entry 15) while with PrOH the reaction did not proceed (entry 16).

The effectiveness of different bases was then examined. Obviously, the aqueous solutions of Bu^tOK and KOH gave results comparable to those obtained with NaOH (Table 2, entries 1 and 2). The use of solid NaOH reduced the yield to 5%, although the ee was higher (66%) (entry 3). Cesium carbonate as the base produced the desired product **B** with 44% ee and 20%

Table 2 Screening of bases in the kinetic resolution of azlactone **A** catalyzed by chiral Co^{III} complex Λ(R,R)-**1a**.^a

Entry	Base	Yield (%) ^b	ee (%) ^c
1 ^d	Bu ^t OK	42	60
2 ^d	KOH	44	58
3	NaOH	5	66
4	Cs ₂ CO ₃	20	44
5	K ₃ PO ₄	55	5
6	Et ₃ N	traces	—
7	DIPEA	6	—
8	DBU	76	4

^aReaction conditions: see footnote to Table 1. ^bYields were determined by ¹H NMR using HMDSO as an internal standard. ^cEnantiomeric purity was determined by chiral HPLC analysis using the Chiralcel OD-H column. ^d1 M aqueous solution (0.2 mmol, 2 equiv.) was used.

yield (entry 4). Somehow, K₃PO₄ proved to be less active in terms of enantioselectivity giving the ester **B** in moderate yield (55%) with only 5% ee (entry 5). Organic bases such as Et₃N and DIPEA were inactive in the reaction (entries 6 and 7); probably their basicity was not sufficient to deprotonate an azlactone. As expected, more basic DBU gave the amino acid derivative **B** in high yield (76%); however, the enantiocontrol was lost, suggesting a possible background reaction catalyzed by the base itself rather than by a Co^{III} catalyst **1a** (entry 8). It is noteworthy that in all cases the conversion was almost complete and the formation of the free amino acid due to the hydrolysis of azlactone **A** with water was observed.

In conclusion, we have herein presented preliminary results of the study of a family of well-defined octahedral cationic chiral-at-cobalt(III) complexes based on (R,R)-1,2-cyclohexanediamine and (R,R)-1,2-diphenylethylenediamine as phase-transfer catalysts for the dynamic kinetic resolution of an azlactone derived from *N*-benzoyl-*tert*-leucine with benzyl alcohol. Although the enantioselective control in the reaction was not high enough (ee up to 66%), yet the possibility of applying these Co^{III} complexes in new reaction was demonstrated. In this context, the implementation of the presented and modified Co^{III} complexes in other asymmetric transformations using azlactones as substrates is underway in our laboratory.

This work has been supported by Russian Science Foundation (grant no. 20-13-00155, <https://rscf.ru/project/23-13-45008/>). The authors are grateful to Dr. M. M. Il'in (INEOS RAS) for chiral HPLC analysis. NMR spectra were collected with support from the Ministry of Science and Higher Education of the Russian Federation.

Online Supplementary Materials

Supplementary data associated with this article can be found in the online version at doi: 10.1016/j.mencom.2024.02.015.

References

- 1 M. A. T. Blaskovich, *J. Med. Chem.*, 2016, **59**, 10807.
- 2 A. Rezhd, M. Islam, M. Huang and J. A. Van Deventer, *Curr. Opin. Biotechnol.*, 2019, **60**, 168.
- 3 H. Gröger, *Chem. Rev.*, 2003, **103**, 2795.
- 4 Y.-P. Xue, C.-H. Cao and Y.-G. Zheng, *Chem. Soc. Rev.*, 2018, **47**, 1516.
- 5 V. A. Larionov, N. V. Stoletova and V. I. Maleev, *Adv. Synth. Catal.*, 2020, **362**, 4325.
- 6 L. Wei, X. Chang, Z. Zhang, Z.-F. Wang and C.-J. Wang, *Chin. Sci. Bull.*, 2023, **68**, 3956.
- 7 S. Shirakawa and K. Maruoka, *Angew. Chem., Int. Ed.*, 2013, **52**, 4312.
- 8 M. J. O'Donnell, *Tetrahedron*, 2019, **75**, 3667.
- 9 Y. Matsumoto, J. Sawamura, Y. Murata, T. Nishikata, R. Yazaki and T. Ohshima, *J. Am. Chem. Soc.*, 2020, **142**, 8498.

10 K. Wakafuji, S. Iwasa, K. N. Ouchida, H. Cho, H. Dohi, E. Yamamoto, T. Kamachi and M. Tokunaga, *ACS Catal.*, 2021, **11**, 14067.

11 H. Mandai, K. Hongo, T. Fujiwara, K. Fujii, K. Mitsudo and S. Suga, *Org. Lett.*, 2018, **20**, 4811.

12 M.-S. Xie, B. Huang, N. Li, Y. Tian, X.-X. Wu, Y. Deng, G.-R. Qu and H.-M. Guo, *J. Am. Chem. Soc.*, 2020, **142**, 19226.

13 V. A. Larionov, B. L. Feringa and Y. N. Belokon, *Chem. Soc. Rev.*, 2021, **50**, 9715.

14 Y. N. Belokon, V. I. Maleev, M. North, V. A. Larionov, T. F. Savel'yeva, A. Nijland and Y. V. Nelyubina, *ACS Catal.*, 2013, **3**, 1951.

15 V. I. Maleev, M. North, V. A. Larionov, I. V. Fedyanin, T. F. Savel'yeva, M. A. Moskalenko, A. F. Smolyakov and Y. N. Belokon, *Adv. Synth. Catal.*, 2014, **356**, 1803.

16 Z. T. Gugkaeva, V. A. Larionov, M. A. Moskalenko, V. N. Khrustalev, Y. V. Nelyubina, A. S. Peregudov, A. T. Tsaloev, V. I. Maleev and Y. N. Belokon, *Synthesis*, 2018, **50**, 607.

17 O. V. Khromova, M. A. Emelyanov, A. F. Smol'yakov, I. V. Fedyanin, V. I. Maleev and V. A. Larionov, *Inorg. Chem.*, 2022, **61**, 5512.

18 M. I. Lapuh, S. Mazeh and T. Basset, *ACS Catal.*, 2020, **10**, 12898.

Received: 28th November 2023; Com. 23/7319