

Stepwise carbon dioxide hydrosilylation catalyzed by bimetallic complexes $[\text{CpM}(\text{CO})_2(\mu\text{-CO})\cdots\text{Pd}(\text{Bu}^t\text{PCP})]$


Daria V. Sedlova,^{a,b} Elena S. Osipova,^a Evgenii I. Gutsul,^a Ivan A. Godovikov,^a Oleg A. Filippov,^a Elena S. Shubina^a and Natalia V. Belkova^{*a}

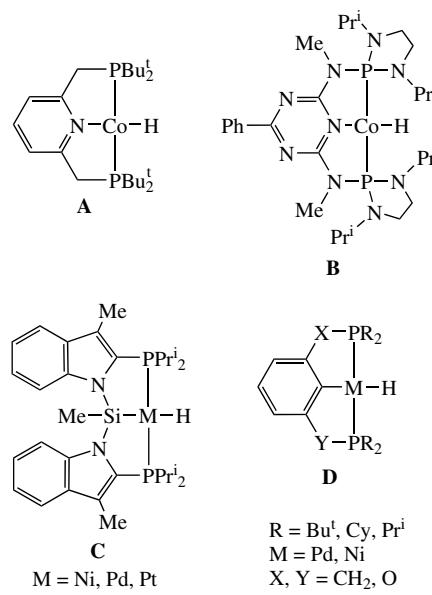
^a A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119334 Moscow, Russian Federation. E-mail: nataliabelk@ineos.ac.ru

^b Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Moscow Region, Russian Federation

DOI: 10.1016/j.mencom.2024.02.010

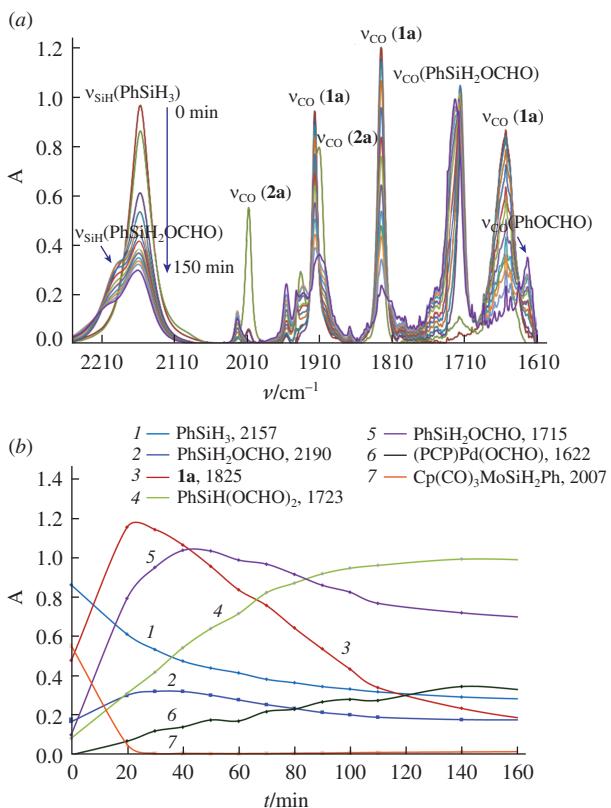
The interaction of bimetallic $(\text{Bu}^t\text{PCP})\text{Pd}\cdots(\text{OC})\text{M}(\text{CO})_2\text{Cp}$ ($\text{M} = \text{Mo, W}$) complexes with PhSiH_3 leads to an efficient heterolytic splitting of Si–H bond that is a primary step in catalytic hydrosilylation of CO_2 . The reaction can be stopped at the formate level in the presence of the above complexes while proceeds further when catalyzed by $(\text{Bu}^t\text{PCP})\text{PdH}$.

Keywords: bimetallic catalysis, pincer complexes, carbon dioxide, hydrosilylation, reaction mechanism, IR spectroscopy.


Carbon dioxide is a unique and almost unlimited source of carbon in the form of C_1 synthon, which can be involved in various chemical reactions yielding valuable chemical compounds.¹ A booming research on the catalytic CO_2 reduction with hydrogen has led to the development of a great number of transition metal complexes^{2,3} some of which employ the metal–ligand cooperation. Most of these complexes catalyze two-electron ($2\bar{e}$) reduction of CO_2 into formic acid⁴ or formate ion, whereas homogeneous cases of $4\bar{e}$ reduction to formaldehyde or $6\bar{e}$ reduction to CH_3OH are not so numerous.² The development of efficient homogeneous catalytic systems based on transition metal complexes that operate at relatively low H_2 pressures and temperatures remains a topical task.^{2,5}

Boranes, R_2BH , or silanes, $\text{R}_n\text{SiH}_{4-n}$, provide a synthetically convenient alternative to H_2 as they are readily available, non-toxic and easier to handle.^{6–9} Their reactions with CO_2 are also well explored, but anyway, the race for more effective catalyst continues. The use of these compounds assumes a heterolytic splitting of their E–H bonds that, as in the case of reduction with H_2 , is often catalyzed by metal pincer complexes. For example, cobalt(I) pincers (**A, B**) operate *via* PhSiH_3 oxidative addition to $\text{Co}(\text{OCHO})$ species forming six-coordinated cobalt(III) dihydrides.^{10–12}

Pincer complexes of Group 10 metals catalyze CO_2 hydroboration to different oxidation levels.^{13–17} Thus, among the bis(indolylphosphino)silyl (PSiP) complexes **C** the Pd catalyst exhibited moderate activity yielding boryl formate while the Ni species selectively produced bis(boryl) acetal.¹⁷ The thorough study on $(^{\text{R}}\text{PXCYP})\text{MH}$ complexes **D** has shown a correlation between the steric bulk of phosphine substituents and the rate of pinacol borane (HBPin) consumption.¹⁸ Interestingly, the presence of triphenyl borate as a Lewis acid co-catalysts altered the selectivity of CO_2 hydroboration, allowing to obtain bis(boryl) acetal and methoxyborane compounds instead of boryl formate in the presence of $(^{\text{R}}\text{PCP})\text{PdH}$ catalysts (**D**; $\text{X} = \text{Y} = \text{CH}_2$).¹⁷ Surprisingly, CO_2 hydrosilylation has not been studied for these complexes.


The mechanistic studies on catalytic CO_2 hydrosilylation¹⁹ and hydroboration²⁰ suggested the sequential reaction, which proceeded as a cascade of three $2\bar{e}$ reduction catalytic cycles of $\text{C}=\text{O}$ insertion into M–H bond and followed by the E–H addition.

We have previously^{21–24} shown that bimetallic complexes $(\text{Bu}^t\text{PCP})\text{Pd}\cdots(\text{OC})\text{M}(\text{CO})_2\text{Cp}$ **1a,b** ($\text{M} = \text{Mo}$ and W , respectively) displayed bifunctional properties. Palladium cationic and molybdenum/tungsten anionic metal centers are able to cooperatively activate bifunctional substrates ($\text{BH}_3\text{–NHR}_2$,²³ HCOOH ²⁴) and thereby launch further catalytic dehydrogenation. Herein, we have studied the reactivity of these bimetallic complexes in Si–H bonds activation, a primary step of the hydrosilylation reactions in general, and in catalytic hydrosilylation of CO_2 *inter alia*.

The IR monitoring revealed that both palladium hydrides ($^{Bu^t}PCP\text{PdH}$ (**D**; $X = Y = \text{CH}_2$), $^{Bu^t}PCP\text{PdH}$ (**D**; $X = \text{CH}_2$, $Y = \text{O}$) and bimetallic complexes **1a,b** catalyzed the reaction of CO_2 with PhSiH_3 under ambient conditions (1 bar, 25 °C).[†] When the CO_2 hydrosilylation is carried out in the presence of palladium hydride only (10 mol% loading), IR spectra show the presence of palladium formate [$\nu_{\text{CO}}(\text{Pd(OCHO})$ at 1622 cm^{-1}]²⁴ and the decrease of $\nu_{\text{SiH}}(\text{PhSiH}_3)$ intensity without an increase of any new bands (see Online Supplementary Materials, Figure S1) suggesting a reduction to formaldehyde level (in the form of bis(silyl) acetal) or methanol level (in the form of methoxysilane). The reaction rate is ten times faster for $^{Bu^t}PCP\text{PdH}$ ($v_0 = 3.0 \times 10^{-6} \text{ mol dm}^{-3} \text{ s}^{-1}$) than for $^{Bu^t}PCP\text{PdH}$ ($v_0 = 2.4 \times 10^{-7} \text{ mol dm}^{-3} \text{ s}^{-1}$) in accordance with higher hydricity of the former and, which resulted in facilitating CO_2 insertion.

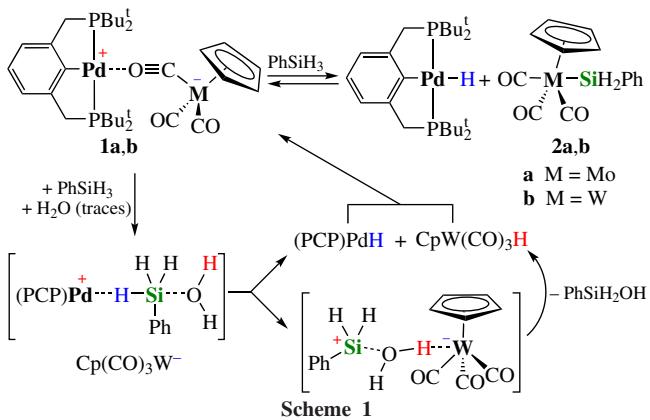
In contrast, in the presence of complexes **1a** or **1b** IR spectra show disappearance of the starting silane (the decrease of ν_{SiH} band at 2157 cm^{-1}) and formation of different reduction product, namely, silyl formate $\text{PhSiH}_2(\text{OCHO})$ characterized by intense ν_{CO} band at 1715 cm^{-1} (Figure 1). Within half an hour, the second ν_{CO} band appears in this region (1723 cm^{-1}) and grows in time, which we assign to silylene bis-formate $\text{PhSiH}(\text{OCHO})_2$.^{25,26}

Figure 1 (a) Time evolution of IR spectra for the mixture of **1a** ($c = 0.006 \text{ M}$) with PhSiH_3 ($c = 0.06 \text{ M}$) under 1 bar CO_2 and (b) the corresponding kinetic curves $A(t)$ for the selected bands. Toluene, $l = 0.05 \text{ cm}$, 298 K.

[†] *Typical procedure for catalytic CO_2 hydrosilylation.* In an argon atmosphere a solution of bimetallic complex **1a,b** ($c = 0.006 \text{ M}$) or palladium hydride complex ($c = 0.006 \text{ M}$) in toluene (2 ml) was placed in a 25 ml Schlenk flask. Then specified amount of PhSiH_3 ($c = 0.06$ or 0.1 M) was added upon stirring at room temperature. Carbon dioxide-filled balloon was connected to the Schlenk flask using a needle through the septum cap. The resulting solution was transferred to the CaF_2 cell with metal needle connector between the home-modified cryostat and flask. IR spectrum was measured, and the solution was transferred back to the flask to keep a CO_2 atmosphere. The measurements were repeated every 10 min.

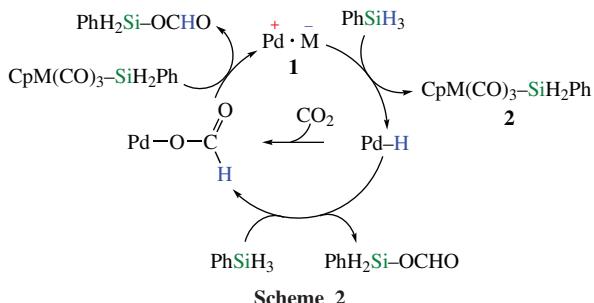
The initial reaction rates v_0 calculated from the decrease of the starting ν_{SiH} band were 4.3×10^{-6} and $3.0 \times 10^{-6} \text{ mol dm}^{-3} \text{ s}^{-1}$ for 10 mol% **1a** and **1b**, respectively. Raising the temperature to 40 °C led to a slight increase in the initial rate for **1a** to $4.3 \times 10^{-6} \text{ mol dm}^{-3} \text{ s}^{-1}$ that can be caused by the change of the reactant ratio due to a decrease of CO_2 solubility. Interestingly, in 2 h after mixing, the ν_{CO} bands of $\text{PhSiH}_{3-x}(\text{OCHO})_x$ ($x = 1, 2$) begin to decrease until complete disappearance. This indicates a deeper reduction yielding bis(silyl) acetal $\text{PhSiH}_2-\text{OCH}_2\text{O}-\text{H}_2\text{SiPh}$ and methoxysilane as confirmed by ^1H NMR spectra (Figure S2). The increase in PhSiH_3 loading to 25 equiv. leads to acceleration of the reaction to $v_0 = 1.6 \times 10^{-5} \text{ mol dm}^{-3} \text{ s}^{-1}$ (Figures S3, S4).

IR spectra also showed the simultaneous transformation of bimetallic complexes. For **1a**, new bands ν_{CO} were observed at 2007, 1936, 1910 cm^{-1} with a low frequency shoulder ν_{SiH} at 2090 cm^{-1} immediately after mixing [Figure 1(a)].[‡] This species **2a** would disappear transforming back into **1a** (Table 1), whose bands slowly fade in the course of the reaction while ν_{CO} of $^{Bu^t}PCP\text{Pd(OCHO)}$ grows in intensity [Figure 1(b)]. Tungsten-based complex **1b** behaves a bit differently showing the appearance of ν_{CO} bands belonging to $\text{CpW}(\text{CO})_3\text{H}$ and formation of a higher amount of $^{Bu^t}PCP\text{Pd(OCHO)}$ (Figure S5).


To probe the structure of **2a**, we monitored the reaction of **1a,b** with PhSiH_3 under an inert atmosphere. At equimolar **1a**/ PhSiH_3 ratio, we observed (Figure S6) an intensity decrease for the ν_{SiH} band 2157 cm^{-1} of PhSiH_3 and appearance of two new low-frequency ν_{SiH} bands at 2118 and 2093 cm^{-1} . At the same time, new bands $\nu_{\text{CO}}(\mathbf{2a})$ appear at 2007, 1936, 1910 cm^{-1} together with ν_{PdH} at 1717 cm^{-1} , growing in intensity on the expense of ν_{CO} bands of **1a** (Figure S7, Table 1). NMR spectra (toluene- d_8) measured after the reaction completion show a set of new proton signals δ_{H} 7.70–7.33 (5 H, Ph), 5.25 (s, 2 H, SiH_2) and 4.41 (s, 5 H, Cp), the ^{29}Si resonance at 7.1 ppm, as well as the signal of $^{Bu^t}PCP\text{PdH}$ in the $^{31}\text{P}\{^1\text{H}\}$ spectrum (δ_{P} 93.5). These IR and NMR data evidence the formation of silyl complex $\text{Cp}(\text{CO})_3\text{Mo}(\eta^1\text{-SiH}_2\text{Ph})$ **2a** (Scheme 1). Such complexes have been obtained, e.g., by the reaction of RSiH_2Br ($\text{R} = \text{Me, Ph}$) with $\text{CpM}(\text{CO})_3\text{Na}$ ($\text{M} = \text{Mo, W}$) in cyclohexane,²⁷ and have spectral characteristics similar to those of **2**.^{27,28} We suggest that bimetallic complex **1a** activates the SiH bond in a FLP-like fashion *via* the trimolecular complex, where heterolytic Si–H bond splitting yields palladium hydride and $\text{Cp}(\text{CO})_3\text{Mo}(\eta^1\text{-SiH}_2\text{Ph})$ (**2a**, see Scheme 1).

Reaction of W-containing bimetallic complex **1b** with PhSiH_3 exhibits some peculiarity. When silane is added to a solution of **1b** in toluene, $\text{CpW}(\text{CO})_3\text{H}$ is instantly formed (ν_{CO} 2020 cm^{-1}) and then transforms in time into **2b** (ν_{CO} 2004, ν_{SiH} 2090 cm^{-1}) (Figure S8). We hypothesize that the silyl cation PhSiH_2^+ particle formed as a result of the hydride-ion transfer to the palladium

Table 1 Characteristic stretching vibrations (ν_{CO} and ν_{SiH}) for organometallic compounds and silyl formates.


Compound	$\nu_{\text{CO}}/\text{cm}^{-1}$	$\nu_{\text{SiH}}/\text{cm}^{-1}$
$^{Bu^t}PCP\text{Pd}-(\text{OC})\text{Mo}(\text{CO})_2\text{Cp}$	1917, 1824, 1654	
$^{Bu^t}PCP\text{Pd}-(\text{OC})\text{W}(\text{CO})_2\text{Cp}$	1911, 1820, 1651	
$\text{Cp}(\text{CO})_3\text{Mo}(\eta^1\text{-SiH}_2\text{Ph})$	2007, 1936, 1910	2118, 2093
$\text{Cp}(\text{CO})_3\text{W}(\eta^1\text{-SiH}_2\text{Ph})$	2004, 1933, 1907	2118, 2093
$\text{CpMo}(\text{CO})_3\text{H}$	2023, 1933	
$\text{CpW}(\text{CO})_3\text{H}$	2019, 1925	
$\text{PhSiH}_{3-x}(\text{OCHO})_x$	1715 ($x = 1$), 1723 ($x = 2$)	2190 ($x = 1$)

[‡] Due to the peculiarities of the reaction set-up, CO_2 is introduced at the last step (*vide supra*). This delay allows **1a** and PhSiH_3 to react yielding compound **2a** (*vide infra*).

cation can activate trace water due to its substantial Lewis acidity²⁹ and protonate tungsten anion within a trimolecular complex $\text{PhSiH}_2^+\cdots\text{OH}_2^-\cdots\text{W}(\text{CO})_3\text{Cp}$ yielding also PhSiH_2OH (see Scheme 1). This side reaction is possible for **1b** because of higher basicity of tungsten anion [$\text{p}K_a(\text{CpWH}(\text{CO})_3) = 16.1$ in MeCN] in comparison with the molybdenum one [$\text{p}K_a(\text{CpMoH}(\text{CO})_3) = 13.9$ in MeCN].^{30,31} Despite more complicated reaction scheme for **1b**, the rate of silane consumption is quite similar for 10 mol% **1a** and **1b** ($v_0 = 1.5 \times 10^{-6}$ and 1.3×10^{-6} mol dm⁻³ s⁻¹, respectively) and is only twice lower than that observed in the presence of $(\text{Bu}^{\text{t}}\text{PCP})\text{PdH}$ (*vide supra*), indicating the SiH bond cleavage is the rate-determining step. Generated *in situ* in the presence of 10 equiv. PhSiH_3 , complex **2a** catalyzes CO_2 hydrosilylation showing the IR spectral picture (Figure S9) identical to that observed for **1a**/ $\text{PhSiH}_3/\text{CO}_2$ (see Figure 1).

The data obtained show that the use of bimetallic complex **1** leads to a stepwise CO_2 hydrosilylation when the reduction can be stopped at the formate level, whereas sole $(\text{Bu}^{\text{t}}\text{PCP})\text{PdH}$ rapidly passes this stage giving a deeper reduction. Insertion of CO_2 into Pd–H bond is a diffusion-controlled step that makes Si–H bond activation a rate-determining step (Scheme 2). The overall hydrosilylation rate (rate of PhSiH_3 consumption) is higher in the presence of bimetallic complexes **1** although the reaction of PhSiH_3 with **1** is slower than with $(\text{Bu}^{\text{t}}\text{PCP})\text{Pd(OCHO)}$. This supports the importance of multiple non-covalent interactions at the key stage of hydride transfer to Pd^+ and the activation of Si–H bond by bimetallic complex in the FLP-fashion. It is noteworthy that upon the addition of Ph_2SiH_2 to bimetallic complex **1a** in toluene, neither palladium hydride nor silyl complex analogs to **2a** is formed. Since the hydride donating ability of Si–H is higher in Ph_2SiH_2 than in PhSiH_3 ,³² we propose that the reaction with Ph_2SiH_2 is hampered by lower steric accessibility of the Si–H bond. Steric factors may also slow the hydrosilylation to formaldehyde or methanol levels when PhSiH_3 is used. The results obtained illustrate the potential of transition metal-based frustrated Lewis pairs (FLPs) in selective hydrosilylation of carbon dioxide to different levels under mild conditions. Tuning the reactivity of the Lewis base and/or Lewis acid component of this system *via* ligand modification will be a subject of our further investigations.

This work was financially supported by the Russian Science Foundation (grant no. 19-13-00459). NMR data were collected using the equipment of the Center for Molecular Composition Studies of INEOS RAS with the support from the Ministry of Science and Higher Education of the Russian Federation (Contract/agreement no. 075-03-2023-642).

Online Supplementary Materials

Supplementary data associated with this article can be found in the online version at doi: 10.1016/j.mencom.2024.02.010.

References

- 1 N. Yu. Kuznetsov, A. L. Maximov and I. P. Beletskaya, *Russ. J. Org. Chem.*, 2022, **58**, 1681 (*Zh. Org. Khim.*, 2022, **58**, 1267).
- 2 S. Navarro-Jaén, M. Virginie, J. Bonin, M. Robert, R. Wojcieszak and A. Y. Khodakov, *Nat. Rev. Chem.*, 2021, **5**, 564.
- 3 S.-T. Bai, G. De Smet, Y. Liao, R. Sun, C. Zhou, M. Beller, B. U. W. Maes and B. F. Sels, *Chem. Soc. Rev.*, 2021, **50**, 4259.
- 4 S. Gelman-Tropp, E. Kirillov, E. Hey-Hawkins and D. Gelman, *Chem. – Eur. J.*, 2023, e202301915.
- 5 J. Klankermayer, S. Wesselbaum, K. Beydoun and W. Leitner, *Angew. Chem., Int. Ed.*, 2016, **55**, 7296.
- 6 F. J. Fernández-Alvarez, A. M. Aitani and L. A. Oro, *Catal. Sci. Technol.*, 2014, **4**, 611.
- 7 F. J. Fernández-Alvarez and L. A. Oro, *ChemCatChem*, 2018, **10**, 4783.
- 8 J. Chen, M. McGraw and E. Y.-X. Chen, *ChemSusChem*, 2019, **12**, 4543.
- 9 Y. Zhang, T. Zhang and S. Das, *Green Chem.*, 2020, **22**, 1800.
- 10 M. L. Scheuermann, S. P. Semproni, I. Pappas and P. J. Chirik, *Inorg. Chem.*, 2014, **53**, 9463.
- 11 H. H. Cramer, S. Ye, F. Neese, C. Werlé and W. Leitner, *JACS Au*, 2021, **1**, 2058.
- 12 H. H. Cramer, B. Chatterjee, T. Weyhermüller, C. Werlé and W. Leitner, *Angew. Chem., Int. Ed.*, 2020, **59**, 15674.
- 13 S. Chakraborty, J. Zhang, Y. J. Patel, J. A. Krause and H. Guan, *Inorg. Chem.*, 2013, **52**, 37.
- 14 S. Chakraborty, Y. J. Patel, J. A. Krause and H. Guan, *Polyhedron*, 2012, **32**, 30.
- 15 S. Chakraborty, J. Zhang, J. A. Krause and H. Guan, *J. Am. Chem. Soc.*, 2010, **132**, 8872.
- 16 H.-W. Suh, L. M. Guard and N. Hazari, *Chem. Sci.*, 2014, **5**, 3859.
- 17 L. J. Murphy, H. Hollenhorst, R. McDonald, M. Ferguson, M. D. Lumsden and L. Turcule, *Organometallics*, 2017, **36**, 3709.
- 18 M. R. Espinosa, D. J. Charboneau, A. Garcia de Oliveira and N. Hazari, *ACS Catal.*, 2019, **9**, 301.
- 19 F. Bertini, M. Glatz, B. Stöger, M. Peruzzini, L. F. Veiros, K. Kirchner and L. Gonsalvi, *ACS Catal.*, 2019, **9**, 632.
- 20 F. Huang, C. Zhang, J. Jiang, Z.-X. Wang and H. Guan, *Inorg. Chem.*, 2011, **50**, 3816.
- 21 E. S. Osipova, N. V. Belkova, L. M. Epstein, O. A. Filippov, V. A. Kirkina, E. M. Titova, A. Rossin, M. Peruzzini and E. S. Shubina, *Eur. J. Inorg. Chem.*, 2016, 1415.
- 22 V. A. Levina, A. Rossin, N. V. Belkova, M. R. Chierotti, L. M. Epstein, O. A. Filippov, R. Gobetto, L. Gonsalvi, A. Lledós, E. S. Shubina, F. Zanobini and M. Peruzzini, *Angew. Chem., Int. Ed.*, 2011, **50**, 1367.
- 23 E. S. Osipova, E. S. Gulyaeva, E. I. Gutsul, V. A. Kirkina, A. A. Pavlov, Y. V. Nelyubina, A. Rossin, M. Peruzzini, L. M. Epstein, N. V. Belkova, O. A. Filippov and E. S. Shubina, *Chem. Sci.*, 2021, **12**, 3682.
- 24 E. S. Osipova, D. V. Sedlova, E. I. Gutsul, Y. V. Nelyubina, P. V. Dorovatovskii, L. M. Epstein, O. A. Filippov, E. S. Shubina and N. V. Belkova, *Organometallics*, 2023, **42**, 2651.
- 25 S. N. Riduan, Y. Zhang and J. Y. Ying, *Angew. Chem., Int. Ed.*, 2009, **48**, 3322.
- 26 B.-X. Leong, Y.-C. Teo, C. Condamines, M.-C. Yang, M.-D. Su and C.-W. So, *ACS Catal.*, 2020, **10**, 14824.
- 27 P. Gusbeth and H. Vahrenkamp, *Chem. Ber.*, 1985, **118**, 1143.
- 28 T. Watanabe, H. Hashimoto and H. Tobita, *Angew. Chem., Int. Ed.*, 2004, **43**, 218.
- 29 E. N. Nikolaevskaya, M. A. Syroeshkin and M. P. Egorov, *Mendeleev Commun.*, 2023, **33**, 733.
- 30 V. Skagestad and M. Tilstet, *J. Am. Chem. Soc.*, 1993, **115**, 5077.
- 31 V. A. Levina, O. A. Filippov, E. I. Gutsul, N. V. Belkova, L. M. Epstein, A. Lledós and E. S. Shubina, *J. Am. Chem. Soc.*, 2010, **132**, 11234.
- 32 Z. M. Heiden and A. P. Lathem, *Organometallics*, 2015, **34**, 1818.

Received: 11th December 2023; Com. 23/7337