

**Synthesis and structure of the first bromide complex
of the four-mercury anticrown $[(o,o'-\text{C}_6\text{F}_4\text{C}_6\text{F}_4\text{Hg})_4\text{Br}]^-$**

**Kirill I. Tugashov, Maxim V. Andreev, Mikhail A. Frolov, Vyacheslav S. Bogdanov,
Alexander F. Smol'yakov, Fedor M. Dolgushin and Vladimir V. Burlakov**

Table of Contents:

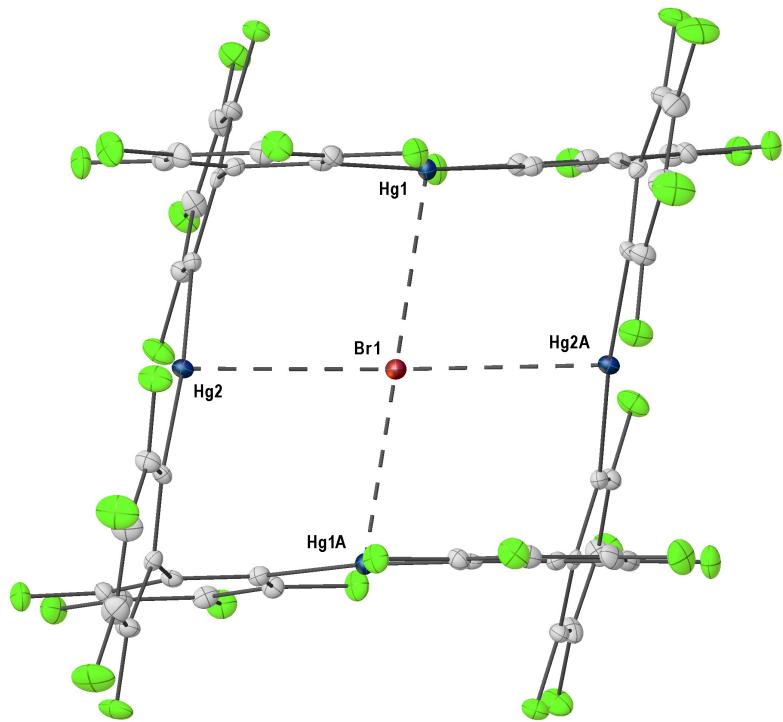

1. Crystal data and structure refinement parameters for the complexes 12 and 14	S2
2. ORTEP representations of the anionic part of complex 14	S4
3. Experimental section	S6
4. ^1H and ^{13}C NMR spectra of 12	S8
5. ^1H and ^{19}F NMR spectra of 14	S9
6. ^{19}F NMR of the reaction mixture between 12 and 1	S10

Table S1. Crystal data and structure refinement parameters for **12**.

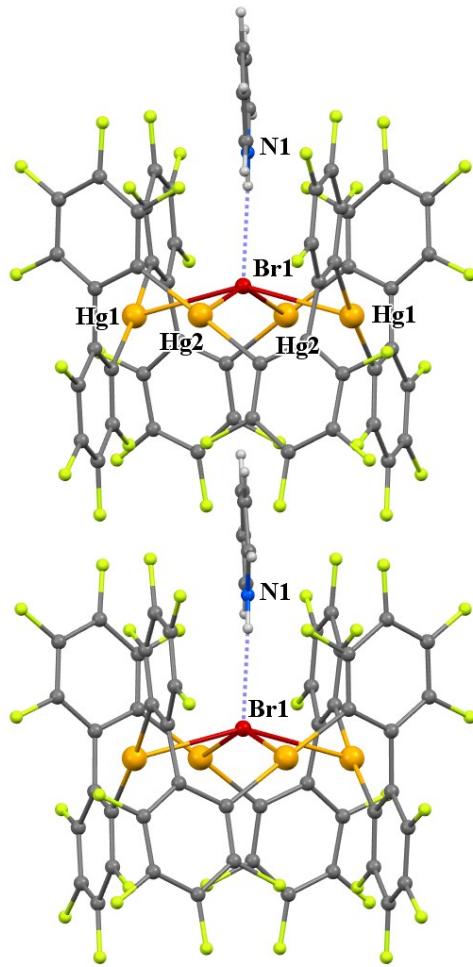

Empirical formula	C ₂₂ H ₂₉ BrHf
Formula weight	551.85
Temperature/K	120
Crystal system	triclinic
Space group	<i>P</i> -1
<i>a</i> (Å)	11.2818(4)
<i>b</i> (Å)	13.8692(5)
<i>c</i> (Å)	14.3460(5)
α (deg)	95.2940(10)
β (deg)	104.2230(10)
γ (deg)	104.7640(10)
<i>V</i> (Å ³)	2075.14(13)
<i>Z</i>	4
ρ _{calc} g/cm ³	1.766
μ/mm ⁻¹	6.953
F(000)	1072.0
Crystal size/mm ³	0.23 × 0.18 × 0.1
Radiation	MoKα (λ = 0.71073)
2θ _{max} (deg)	2.97 to 61.448
Index ranges	-16 ≤ <i>h</i> ≤ 16, -19 ≤ <i>k</i> ≤ 18, -20 ≤ <i>l</i> ≤ 20
Reflections collected	28128
Independent reflections	12763 [R _{int} = 0.0227, R _{sigma} = 0.0324]
Data/restraints/parameters	12763/0/445
Goodness-of-fit on F ²	1.018
Final R indexes (<i>I</i> >= 2σ (<i>I</i>))	R ₁ = 0.0224, wR ₂ = 0.0441
Final R indexes [all data]	R ₁ = 0.0293, wR ₂ = 0.0458
Largest diff. peak/hole / e Å ⁻³	0.86/-0.95

Table S2. Crystal data and structure refinement parameters for **14**.

Empirical formula	C ₆₇ H ₂₂ BrF ₃₂ Hg ₄ N
Formula weight	2331.12
Temperature/K	120
Crystal system	orthorhombic
Space group	Pccn
<i>a</i> (Å)	23.6319(8)
<i>b</i> (Å)	12.2246(4)
<i>c</i> (Å)	21.7567(8)
α (deg)	90
β (deg)	90
γ (deg)	90
<i>V</i> (Å ³)	6285.3(4)
<i>Z</i>	4
ρ_{calc} g/cm ³	2.463
μ /mm ⁻¹	10.517
F(000)	4296
Crystal size/mm ³	0.32 × 0.12 × 0.10
Radiation	MoK α (λ = 0.71073)
2 θ _{max} (deg)	3.45 to 56.00
Index ranges	-31 ≤ <i>h</i> ≤ 31, -16 ≤ <i>k</i> ≤ 16, -28 ≤ <i>l</i> ≤ 28
Reflections collected	69967
Independent reflections	7593 [R _{int} = 0.0987, R _{sigma} = 0.0488]
Data/restraints/parameters	7593/0/473
Goodness-of-fit on F ²	1.037
Final R indexes ($I >= 2\sigma(I)$)	R ₁ = 0.0333, wR ₂ = 0.0642
Final R indexes [all data]	R ₁ = 0.0763, wR ₂ = 0.0825
Largest diff. peak/hole / e Å ⁻³	2.051/-0.926

Figure S1. ORTEP representation of the anionic part of complex **14** perpendicular the *c* axis of the crystal with thermal ellipsoids drawn at the 30% probability level.

Figure S2. Fragment of a chain of molecules **14** along the *c* axis of the crystal. The pyridinium is disordered over two positions (occupancy 0.5 : 0.5) around the two-fold axis; the bromide anion is disordered over two positions (occupancy 0.95 : 0.05) above and below Hg₄ mean plane (the only position is depicted).

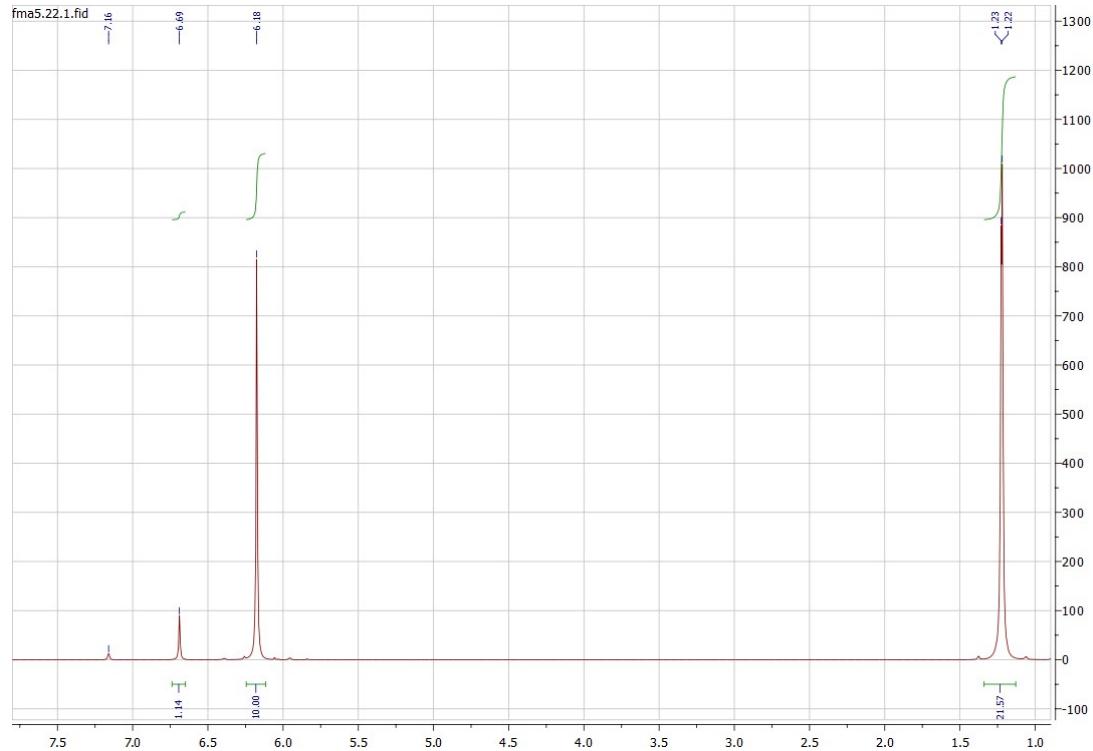
EXPERIMENTAL SECTION

Experiments were carried out under Ar with careful exclusion of air and moisture using standard Schlenk techniques. The starting five-membered hafnacyclocumulene **11** were prepared according to the published procedure.^{S1} Commercial $\text{Bu}^t\text{C}\equiv\text{C}-\text{C}\equiv\text{C}\text{Bu}^t$ and aniline hydrobromide were purchased from Sigma Aldrich and used without additional purification. Cyclic tetrameric perfluoro-*o,o'*-biphenylenemercury **1** was synthesised according the published procedure.^{S2} Solvents (pyridine, *n*-hexane) were purified by conventional methods and freshly distilled prior to use over metallic sodium under Ar. The ¹H, ¹³C and ¹⁹F NMR spectra were recorded on a Bruker Av-400 spectrometer. Chemical shifts (¹H, ¹³C) are given relative to SiMe₄ and are referenced to signals of benzene-d₆ (δ_{H} 7.16 ppm, δ_{C} 128.0 ppm as solvent), the ¹⁹F chemical shifts are given relative to CFCl₃ as an external standard. The Raman spectra were registered on a JY LABRAM 300 spectrometer (He-Ne laser, 632.8 nm, 5 mW). The mass spectra were recorded on a Finnigan Polaris Q instrument.

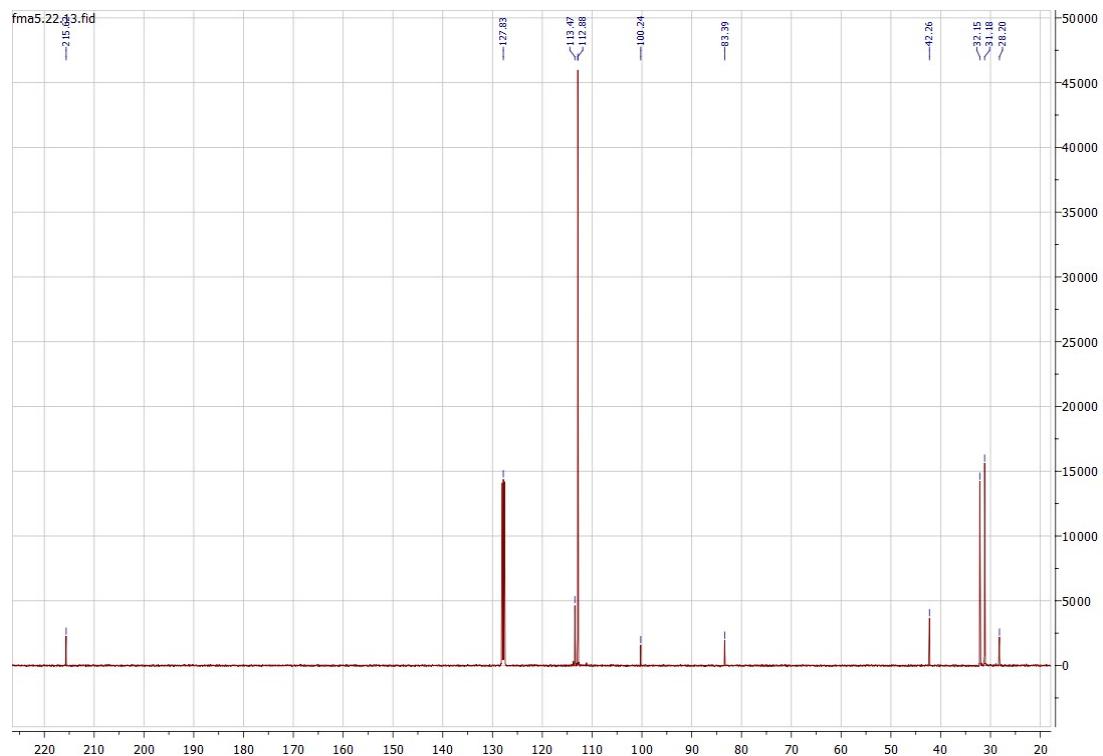
Protolysis of complex 11 and synthesis of 12: Complex **11** (0.753 g, 1.60 mmol) was dissolved in pyridine (10 ml) at room temperature, and PhNH₃Br (0.278 g, 1.60 mmol) was added to the resulting light-yellow solution. The next day, the obtained yellow solution was evaporated *in vacuo* to dryness, and the residue was extracted with *n*-hexane (20 ml). The resulted solution was filtered and evaporated to 2-3 ml. The formed crystals were separated, washed with cold *n*-hexane and dried in vacuo. Yield of **12**: 0.547 g (62%). M.p. 122-123°C (under Ar). Anal. calcd. for C₂₂H₂₉BrHf: C, 47.88; H, 5.30; Br, 14.48; found C, 47.90; H, 5.34; Br, 14.42. ¹H NMR (C₆D₆, δ , ppm): 1.22 (s, 9H, CMe₃); 1.23 (s, 9H, CMe₃); 6.18 (s, 10H, Cp); 6.69 (s, 1H, C=CH). ¹³C NMR (C₆D₆, δ , ppm): 28.4 (CMe₃); 31.3 (CMe₃); 32.3 (CMe₃); 42.4 (CMe₃); 83.6, 100.4 (C≡C); 113.0 (Cp); 113.6 (C=CH); 215.8 (ZrC). Raman spectrum (ν , cm⁻¹): 1523 (C=C), 2201 (C≡C). MS (70 eV, m/z): 495 [M-*t*Bu]⁺; 389 [Cp₂HfBr]⁺.

Reaction of 1 with complex 12 and synthesis of 14: Complex **12** (0.076 g, 0.138 mmol) was dissolved in pyridine (2 ml) at room temperature, and compound **1** (0.273 g, 0.137 mmol) was added. The obtained solution was heated at 60°C for 30 h. The resulting brown solution was

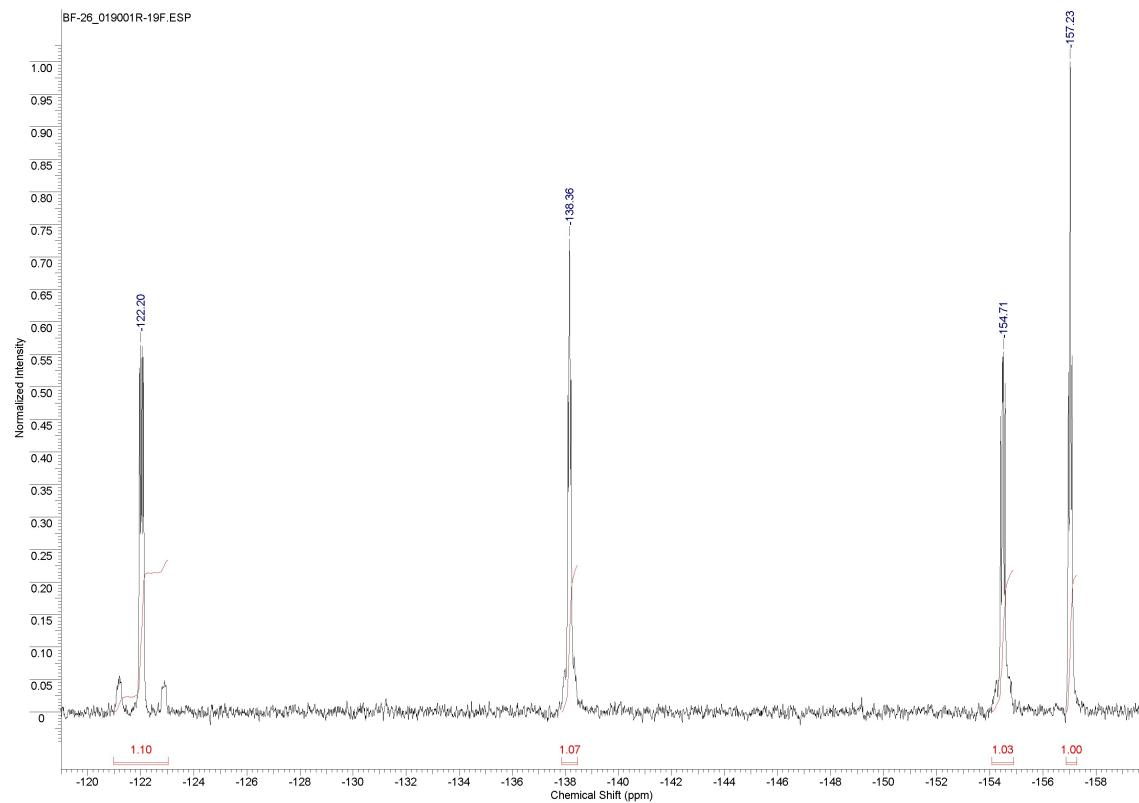
concentrated by an Ar stream to ~ 0.5 ml. The next day, the formed colourless crystals were separated by decanting of the mother liquor and dried in an argon stream. Yield of **14**: 0.146 g (55%). Anal. calcd. for $C_{53}H_6BrF_{32}Hg_4N$: C, 29.65; H, 0.28; F, 28.32; found C, 29.71; H, 0.43; F, 28.43. ^{19}F NMR (acetone-D₆, δ , ppm): -122.2 (dd, 8F); -138.4 (m, 8F); -154.7 (dd, 8F); -157.2 (m, 8F). The crystals of **14** were grown from pyridine : toluene mixture (2 :1) and not dried in vacuum. In the another experiment, compound **14** was obtained directly: to a solution of anticrown **1** (0.1703 g, 0.0857 mmol) in acetone - ethanol (1:1, 15 ml) mixture a solution of pyridinium bromide (0.0137 g, 0.0856 mmol) in ethanol (2 ml) was added. The next day, the resulting solution was slowly concentrated to 1 ml at 20°C and the precipitated colourless **14** was filtered off, washed with cold methanol (3×0.5 ml, 0°C) and dried in vacuum for 3 h. Yield: 0.0508 g (18%). Anal. calcd. for $C_{53}H_6BrF_{32}Hg_4N$: C, 29.65; H, 0.28; F, 28.32; found C, 29.24; H, 0.41; F, 28.67. ^{19}F NMR (acetone-D₆, δ , ppm): -122.3 (dd, 8F); -138.5 (m, 8F); -154.7 (m, 8F); -157.2 (m, 8F).


X-ray Diffraction Study. Diffraction data for **12** and **14** were collected on a Bruker Kappa APEX II Duo diffractometer using graphite-monochromated Mo-K α radiation. Semiempirical absorption correction based on equivalent reflections was applied using the SADABS program.^{S3} The structures were solved by direct methods and refined by full-matrix least-squares procedures on F^2 with the SHELXTL software package.^{S4} ^{S5} Molecular graphics were drawn using the OLEX2/Linux-amd64 program.^{S6}

References


- S1 V. V. Burlakov, T. Beweries, V. S. Bogdanov, P. Arhdt, W. Baumann, P. V. Petrovskii, A. Spannenberg, K. A. Lyssenko, V. B. Shur and U. Rosenthal, *Organometallics*, 2009, **28**, 2864.
- S2 K. I. Tugashov, D. A. Gribanyov, F. M. Dolgushin, A. F. Smol'yakov, A. S. Peregudov, Z. S. Klemenkova, O. V. Matvienko, I. A. Tikhonova and V. B. Shur, *Organometallics*, 2017, **36**, 2437.
- S3 *SADABS, Version 2016/5*, Bruker AXS, Madison, Wisconsin, USA.
- S4 G. M. Sheldrick, *Acta Crystallogr.*, 2008, **A64**, 112.
- S5 G. M. Sheldrick, *Acta Crystallogr.*, 2015, **C71**, 3.
- S6 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Crystallogr.*, 2009, **42**, 339.

NMR spectra of complexes 12 and 14


Figure S3. ^1H NMR of **12** (400 MHz, C_6D_6).

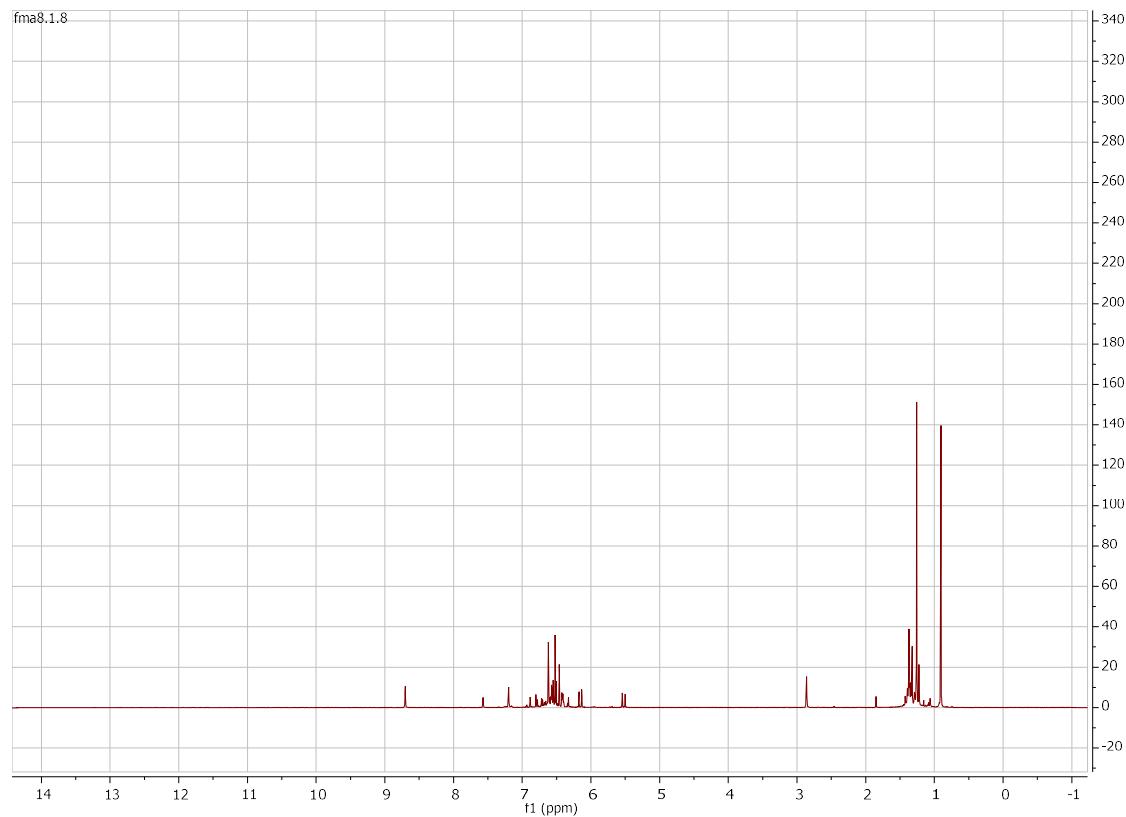

Figure S4. ^{13}C NMR of **12** (400 MHz, C_6D_6).

Figure S5. ^{19}F NMR of **14** (acetone- D_6).

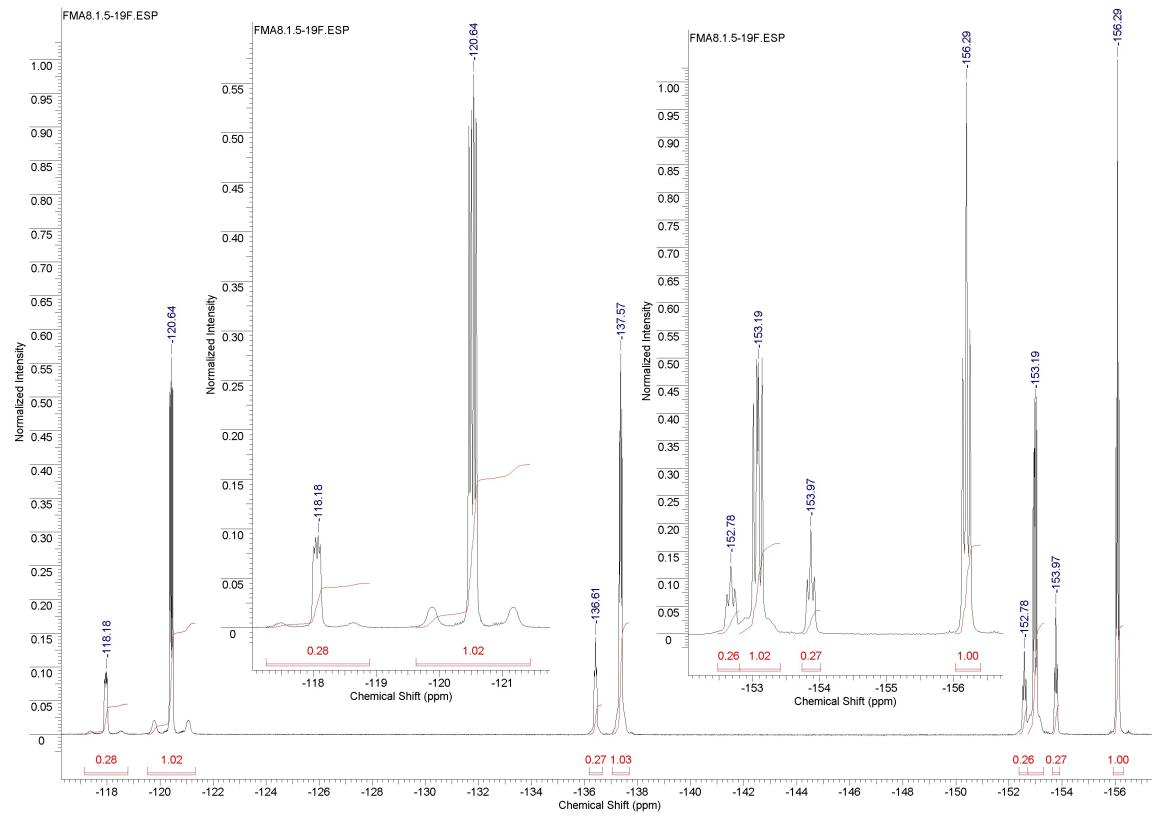

Figure S6. ^1H NMR of reaction mixture **12** with **1** (pyridine- D_5).

Figure S7. ^{19}F NMR of the reaction mixture between **12** and **1** after 4 hours (pyridine- D_5).

Signals at δ $-120.6, -137.6, -153.2, -156.3$ ppm belong to bromide complex of anticrown **1**;

signals at δ $-118.2, -136.6, -152.8, -154.0$ ppm belong to source **1**.

