

Synthesis, optical and electrochemical properties of regioisomeric methanofullerene derivatives of $C_s\text{-}C_{70}(\text{CF}_3)_8$

Sofia V. Gracheva, Nadezhda B. Tamm, Maria P. Kosaya, Alexey V. Rybalchenko, Nikita M. Belov, Natalia S. Lukonina and Alexey A. Goryunkov

Contents

General information.....	S1
Synthetic procedures	S2
Figure S1. The HPLC traces and the negative ions MALDI mass spectra for isomeric methanofullerenes $C_{70}(\text{CF}_3)_8\text{DPM}$ 2 and 5	S4
Figure S2. The ^{19}F and ^1H NMR spectra of methanofullerene 2 (signals from admixture via oxidation in solution at 2 weeks are marked by asterisk).....	S4
Figure S3. The ^{19}F and ^1H NMR spectra of methanofullerene 5 (signals from admixture via oxidation in solution at 2 weeks are marked by asterisk).....	S5
Figure S4. The UV/Vis spectra of $C_s\text{-}C_{70}(\text{CF}_3)_8$ and its monocyclopropanated adducts $C_{70}(\text{CF}_3)[X]$, where $X\text{=DPM}$ for derivatives 1 ^{S4} , 2 and 5 under study and $X\text{=C}(\text{CO}_2\text{Et})_2$ obtained via the Bingel-Hirsch reaction ^{S7} (toluene, wavelength range of 300–800 nm).	S5
Figure S5. The CVA curve for methanofullerene 2 (Pt, <i>o</i> DCB, 0.2 M $n\text{-Bu}_4\text{NBF}_4$, 100 mV s $^{-1}$).....	S6
Figure S6. The CVA curve for methanofullerene 5 (Pt, <i>o</i> DCB, 0.2 M $n\text{-Bu}_4\text{NBF}_4$, 100 mV s $^{-1}$).....	S6
Figure S7. The correlation of LUMO energies estimated from CVA and calculated at the DFT level of theory (PBE/TZ2p).....	S6
References:.....	S6

General information

High-Performance Liquid Chromatography. Analyses of samples by means of HPLC were performed using Agilent 1100 system (diode array detector operated at 190–950 nm) equipped with a Cosmosil Buckyprep column (4.6 mm i.d. \times 25 cm) at 23°C. Isolation of the compounds was performed using Waters Breeze series system (UV/vis λ 2 detector operated at 190–700 nm) equipped with a Cosmosil Buckyprep semi-preparative column (10 mm i.d. \times 25 cm) at 25°C. Mixtures of toluene and hexane were used as eluents.

Mass spectrometry. MALDI mass spectra were recorded in the negative ions mode using a Bruker Autoflex II TOF-mass spectrometer (337 nm impulse nitrogen laser). *trans*-2-[3-(4-*tert*-Butylphenyl)-2-methyl-2-propenylidene]malononitrile (DCTB, Sigma Aldrich, $\geq 98\%$) was used as a matrix, the analyte-to-matrix ratio was ca 1:1000.

Fluorescence spectroscopy. Absorption and emission spectra were recorded using ULS2048x64TEC SensLine fiber-optic spectrometer equipped with AvaLight-DHc light source (200–2500 nm range, deuterium and halogen lamps). Spectrometer working range is 190–1100 nm. Optical resolution is 0.04 nm. Solutions of the samples in cyclohexane were measured at the 355 nm excitation wavelength using light-emitting diode source AvaLight-LED355 (FWHM=10 nm). Fluorescence quantum yields were determined by relative method toward standard quinine sulfate (QS (\geq 98%, BioReagent, Sigma-Aldrich) in 0.5M H₂SO₄ (Φ_F 0.546)).^{S1}

NMR spectroscopy. NMR spectra were registered using Bruker Avante-600 spectrometer operated with 600.3 MHz (¹H) and 564.7 MHz (¹⁹F) in CDCl₃ at 25°C. CHCl₃ and C₆F₆ were employed as internal standards with δ_H = 7.27 ppm and δ_F = -162.9 ppm.

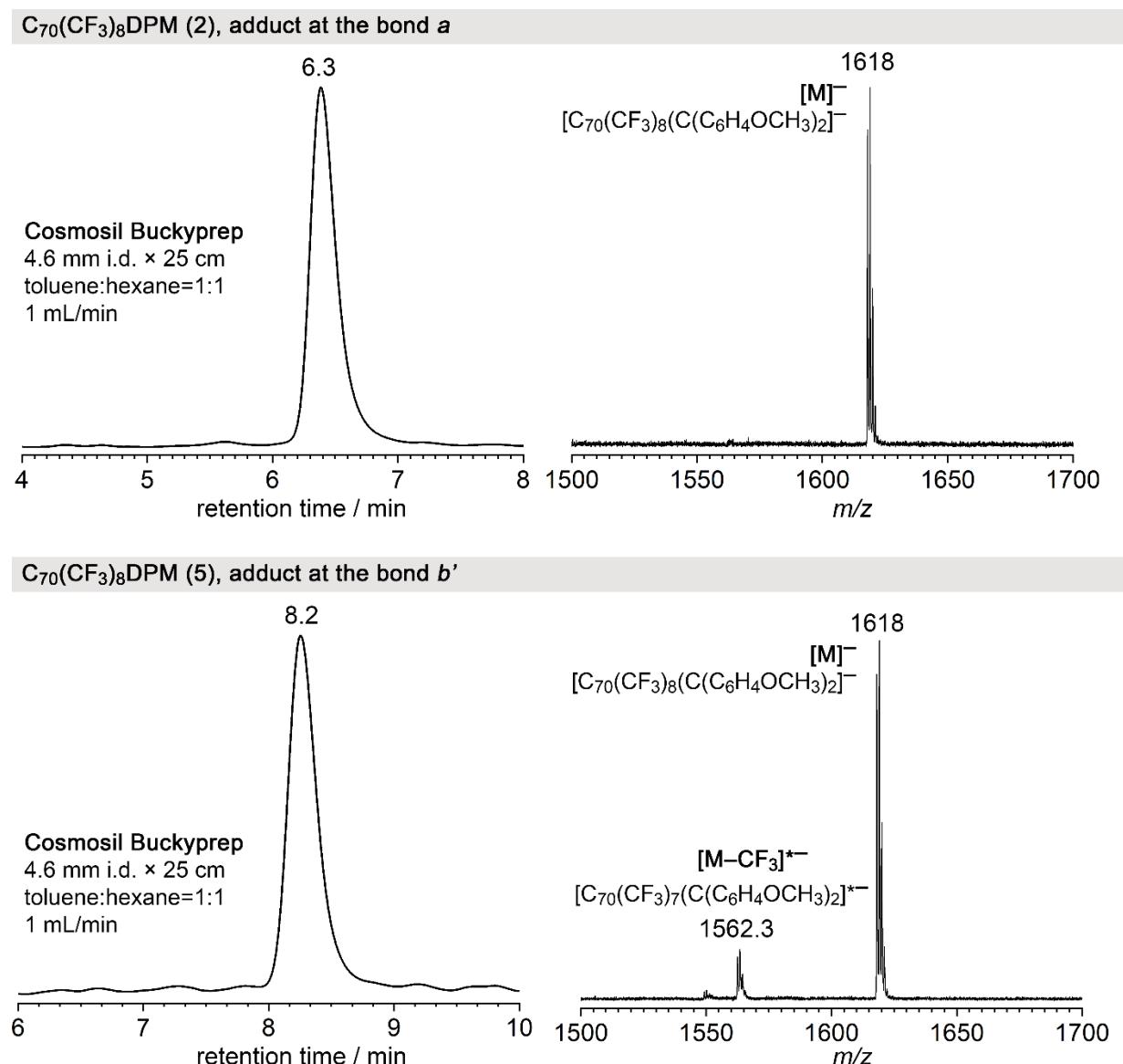
Electrochemistry. The voltammetry experiments were carried out in a glovebox MBRAUN LabStar under argon atmosphere with $p(O_2)$ < 0.1 ppm, $p(H_2O)$ < 0.1 ppm. The *ortho*-dichlorobenzene (*o*-DCB) used as a solvent was purified by refluxing in the presence of CaH₂ followed by distillation under the reduced pressure of argon. CVA curves were registered at room temperature in a three-electrode cell with a platinum disk working electrode (WE), a platinum coil counter electrode (CE), and an Ag/AgNO₃ reference electrode (RE) using an Elins Pi-50Pro-3 potentiostat (Russia). The RE was made of a silver wire immersed in a solution of AgNO₃ (0.01 mol L⁻¹) and *n*-Bu₄NBF₄ (0.1 mol L⁻¹) in acetonitrile. *n*-Bu₄NBF₄ (for electrochemical analysis, 99+%, Fluka, 0.2 mol L⁻¹) in *o*-DCB was used as the supporting electrolyte (prepared and stored in the glovebox). The scan rate was 100 mV s⁻¹. The potential *iR*-drops were corrected during the experiment using the hardware positive feedback method. After the experiment, ferrocene (Fc) was added to the cell as an internal redox system after each experiment. The potential of the Fc^{+/-} couple in *o*-DCB was 0.204 V vs the Ag/AgNO₃ couple.

The energies of the LUMO and HOMO levels were estimated from the electrochemical data using the equations of $E_{\text{LUMO}}^{\text{EC}} = -(E_{[\text{onset,red vs Fc}^{+/-}]} + 5.1) \text{ eV}$ and $E_{\text{HOMO}}^{\text{EC}} = -(E_{[\text{onset,ox vs Fc}^{+/-}]} + 5.1)^{\text{S2}}$ where $E_{[\text{onset,red vs Fc}^{+/-}]}$ and $E_{[\text{onset,ox vs Fc}^{+/-}]}$ values are the onsets of the first reduction and oxidation potentials (V) of the compound referenced to Fc^{+/-} couple; the value of -5.1 V is the formal potential of the Fc^{+/-} redox couple in the Fermi scale assuming its value of 0.40 V versus SCE in acetonitrile (neglecting the Fc^{+/-} couple changing for ca 0.03 V in acetonitrile and *o*-DCB).^{S3}

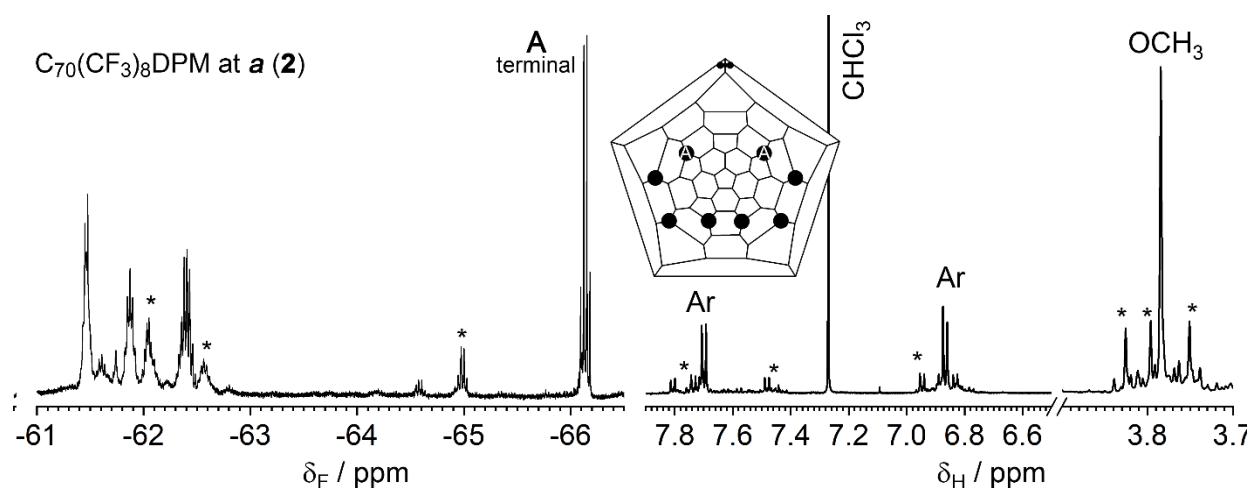
Synthetic procedures

Trifluoromethylated fullerene C₅-C₇₀(CF₃)₈ was synthesized according to the two-step typical procedure previously described in refs.^{S4,S5}. Isomerically pure C₅-C₇₀(CF₃)₈ was isolated by means of preparative HPLC using Cosmosil Buckyprep 10 mm i.d. \times 25 cm column toluene as an eluent. **4,4'-Dimethoxybenzophenone tosyl hydrazone** was synthesized according to standard procedure.^{S6}

Reaction of C₅-C₇₀(CF₃)₈ and 4,4'-dimethoxybenzophenone tosyl hydrazone: to the solution of C₅-C₇₀(CF₃)₈ (25 mg, 18 μ mol) in *o*-DCB (20 mL) were added 4,4'-dimethoxybenzophenone tosyl hydrazone (11 mg, 27


μmol), K_2CO_3 (ca 50 mg), pyridine (200 μL) and catalytic amount of 18-crown-6 (ca 10%mol). The reaction mixture was refluxed under inert atmosphere for 3.5 h. Then it was quenched by adding trifluoroacetic acid (300 μl), and filtered through a short plug of silica with toluene as an eluent. Then the semi-preparative HPLC (Cosmosil Buckyprep 10 mm i.d. \times 25 cm column and toluene:hexane=1:1 as an eluent) product mixture separation was employed to isolate fractions with individual compounds. Yields of compounds were estimated according to the HPLC trace integration registered at wavelength of 290 nm. The molecular composition of the isolated fractions was established by means of MALDI mass spectrometry. Spectral identification of the compounds was performed using ^{19}F and ^1H NMR as well as UV/Vis data. The spectral data for the early eluted fraction of $\text{C}_{70}(\text{CF}_3)_8\text{DPM}$ (**1**) is fully consisted with those for the major monoadduct at the near-equatorial bond **d** which was previously reported.⁵⁴

$\text{C}_{70}(\text{CF}_3)_8\text{DPM}$ (2**), C_5 -symmetrical adduct at the bond **a**:** Yield: 12%; HPLC (t_{R} , min; CB, toluene:hexane 1:1, 1 mL/min): 6.32; MALDI MS m/z (*I*, %): 1618 (100%, M^- , $\text{C}_{70}(\text{CF}_3)_8\text{DPM}^-$); UV (λ_{max} , nm): 324, 330, 358, 378, 422, 450, 482, 498; NMR ^1H (CDCl_3 , δ_{H} , ppm, *J*, Hz): 3.78 (s, 6H, OCH_3); 6.87 (m, 4H); 7.70 ppm (m, 4H); NMR ^{19}F (CDCl_3 , $-\delta_{\text{F}}$, ppm, *J*, Hz): 61.47 (m, 6F, CF_3), 61.87 (m, 6F, CF_3), 62.40 (m, 6F, CF_3), 66.13 ppm (q, 6F, $J_{\text{FF}}=16.5$ Hz, CF_3).


$\text{C}_{70}(\text{CF}_3)_8\text{DPM}_2$ (3**):** Yield: 11%; HPLC (t_{R} , min; CB, toluene:hexane 1:1, 1 mL/min): 6.75; MALDI MS m/z (*I*, %): 1845 (100%, M^- , $\text{C}_{70}(\text{CF}_3)_8\text{DPM}_2^-$); UV (λ_{max} , nm): 364, 398, 430, 460, 488, 516, 556.

$\text{C}_{70}(\text{CF}_3)_8\text{DPM}$ (4**):** Yield: 10%; HPLC (t_{R} , min; CB, toluene:hexane 1:1, 1 mL/min): 7.49; MALDI MS m/z (*I*, %): 1618 (100%, M^- , $\text{C}_{70}(\text{CF}_3)_8\text{DPM}^-$); UV (λ_{max} , nm): 328, 390, 450, 480, 514, 552.

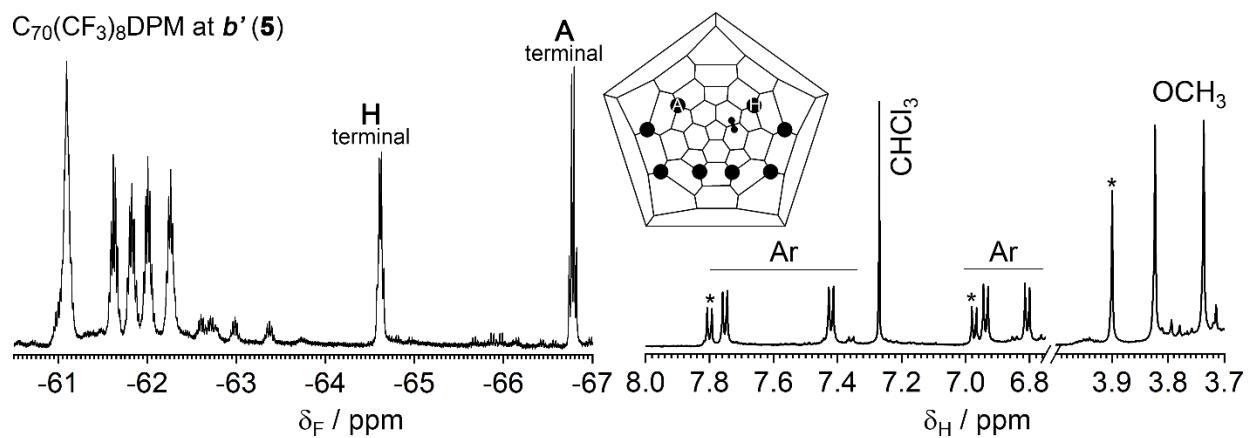

$\text{C}_{70}(\text{CF}_3)_8\text{DPM}$ (5**), adduct at the bond **b'**:** Yield: 16%; HPLC (t_{R} , min; CB, toluene:hexane 1:1, 1 mL/min): 8.18; MALDI MS m/z (*I*, %): 1618 (100%, M^- , $\text{C}_{70}(\text{CF}_3)_8\text{DPM}^-$), 1562.3 (12%, $[\text{M}-\text{CF}_3]^{*-}$, metastable $\text{C}_{70}(\text{CF}_3)_7\text{DPM}^{*-}$), 1549 (3%, $[\text{M}-\text{CF}_3]^-$, $\text{C}_{70}(\text{CF}_3)_7\text{DPM}^-$); UV (λ_{max} , nm): 306, 352, 382, 430, 460, 496, 534; NMR ^1H (CDCl_3 , δ_{H} , ppm, *J*, Hz) 3.74 (s, 3H, OCH_3), 3.82 (s, 3H, OCH_3); 6.81 (m, 2H, Ar); 6.95 (m, 2H, Ar), 7.42 (m, 2H, Ar), 7.75 ppm (m, 2H, Ar); NMR ^{19}F (CDCl_3 , $-\delta_{\text{F}}$, ppm, *J*, Hz): 61.09 (m, 6F, CF_3), 61.63 (m, 3F, CF_3), 61.83 (m, 3F, CF_3), 62.01 (m, 3F, CF_3), 62.26 (m, 3F, CF_3); 64.61 (q, 3F, $J_{\text{FF}}=13.9$ Hz, CF_3); 66.78 (q, 3F, $J_{\text{FF}}=16.0$ Hz, CF_3).

Figure S1. The HPLC traces and the negative ions MALDI mass spectra for isomeric methanofullerenes $C_{70}(CF_3)_8$ DPM **2** and **5**.

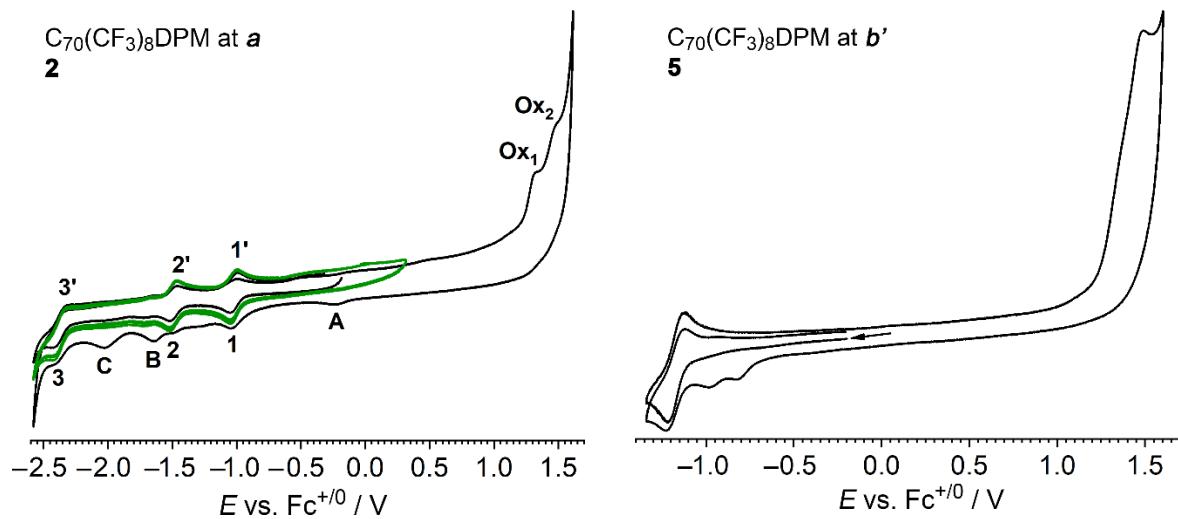

Figure S2. The ^{19}F and ^1H NMR spectra of methanofullerene **2** (signals from admixture via oxidation in solution at 2 weeks are marked by asterisk).

Figure S3. The ^{19}F and ^1H NMR spectra of methanofullerene **5** (signals from admixture via oxidation in solution at 2 weeks are marked by asterisk).

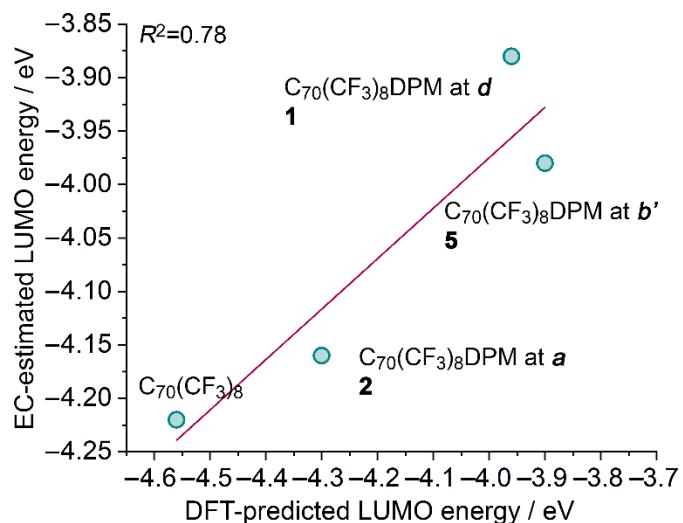


Figure S4. The UV/Vis spectra of $\text{C}_5\text{-C}_{70}(\text{CF}_3)_8$ and its monocyclopropanated adducts $\text{C}_{70}(\text{CF}_3)[\text{X}]$, where $\text{X}=\text{DPM}$ for derivatives **1**^{S4}, **2** and **5** under study and $\text{X}=\text{C}(\text{CO}_2\text{Et})_2$ obtained via the Bingel-Hirsch reaction^{S7} (toluene, wavelength range of 300–800 nm).

Figure S5. The CVA curve for methanofullerene **2** (Pt, oDCB, 0.2 M n -Bu₄NBF₄, 100 mV s⁻¹).

Figure S6. The CVA curve for methanofullerene **5** (Pt, oDCB, 0.2 M n -Bu₄NBF₄, 100 mV s⁻¹).

Figure S7. The correlation of LUMO energies estimated from CVA and calculated at the DFT level of theory (PBE/TZ2p).

References:

- S1 A. M. Brouwer, *Pure Appl. Chem.*, 2011, **83**, 2213.
- S2 C. M. Cardona, W. Li, A. E. Kaifer, D. Stockdale and G. C. Bazan, *Adv. Mater.*, 2011, **23**, 2367.
- S3 A. A. J. Torriero, *Med. Anal. Chem. Int. J.*, 2019, **3**, 000144.
- S4 S. V. Gracheva, T. S. Yankova, M. P. Kosaya, V. A. Brotsman, I. N. Ioffe, N. S. Lukonina and A. A. Goryunkov, *Phys. Chem. Chem. Phys.*, 2022, **24**, 26998
- S5 N. M. Belov, M. G. Apenova, A. V. Rybalchenko, E. V. Borkovskaya, N. S. Lukonina, A. A. Goryunkov, I. N. Ioffe, S. I. Troyanov and L. N. Sidorov, *Chem. - Eur. J.*, 2014, **20**, 1126.
- S6 Y. Xia, F. Hu, Z. Liu, P. Qu, R. Ge, C. Ma, Y. Zhang and J. Wang, *Org. Lett.*, 2013, **15**, 1784.
- S7 N. S. Ovchinnikova, A. A. Goryunkov, P. A. Khavrel, N. M. Belov, M. G. Apenova, I. N. Ioffe, M. A. Yurovskaya, Troyanov, S. I. Troyanov, Sidorov, L. N. Sidorov and E. Kemnitz, *Dalton Trans.*, 2011, **40**, 959.