

An expedient synthesis of a picolinamide-based betain bearing a 3-sulfonatopropyl substituent

Eugeniya P. Kramarova, Dmitry Lyahmun, Dmitry V. Tarasenko,
Alexander A. Korlyukov, Pavel V. Dorovatovskii, Tatiana A. Shmigol,
Sergey Yu. Bylikin, Yuri I. Baukov and Vadim V. Negrebetsky

Experimental Section

The purities of all compounds were assessed by elemental analysis and NMR and found to be $\geq 95\%$. NMR spectra were recorded on a Bruker Avance II 300 spectrometer at 300 MHz (^1H) and 75 MHz (^{13}C) in D_2O in the pulse mode followed by Fourier transformation using Me_4Si as internal standard. Spin multiplicities are designated as s (singlet), d (doublet), t (triplet), q (quartet) or m (multiplet). IR spectra in the solid phase were recorded on a Bruker Tensor-27 instrument with an attenuated total internal reflectance (ATR) module. Refraction parameters were measured using an IRF-454B2M refractometer. Melting points were determined using a Stuart SMP10 instrument. Elemental analyses were carried out at the Laboratory of Organic Microanalysis of INEOS RAS.

General synthetic procedure for compounds.

A solution of 2-picolinic acid **5'** (1.23 g, 0.01 mol) or its derivative and 1,3-propanesultone **2** (1.46 g, 0.012 mol) in methanol is stirred at ambient temperature for 7 days or refluxed for 8 hours. Excess solvent is removed in vacuum. The products are isolated by filtration.

3-(2-Carbamoylpyridin-1-ium-1-yl)propane-1-sulfonate (3).

a) Ester **6** (0.54 g, 0.002 mol) is stirred with aqueous ammonia (25%, 10 ml) for 7 days, then the mixture is evaporated to dryness. The residue is re-crystallized from ethanol–water (10:1) to afford 0.31 g (64%, Table 1, entry 3) of **3**, m. p. 185–187°C (lit. data: m. p. 187–188°C; *Molecules*, 2022, **27**, 7542).

IR spectrum (solid, ν/cm^{-1}): 1611 s (C=O), 1581 w (C=C_{py}), 1228 s, 1160 s, 1037 s (SO₃).

b) A mixture of ethyl picolinate **5** (0.75 g, 0.005 mol), 1,3-propanesultone **2** (0.75 g, 0.006 mol) and acetonitrile (3 ml) is refluxed for 8 hours, then the solvent is removed in vacuum. The residue is stirred with aqueous ammonia (25%, 20 ml) for 5 days, then the mixture is evaporated to dryness. The residue is crystallized under diethyl ether (10 ml) to afford 1.08 g (89%) of **3**, m.p. 185–187°C. IR spectrum (solid, ν/cm^{-1}): 1613 s (C=O), 1581 w (C=C_{py}), 1229 s, 1158 s, 1038 s (SO₃).

c) A mixture of ethyl picolinate **5** (1.5 g, 0.01 mol), 1,3-propanesultone **2** (1.5 g, 0.012 mol) and ethanol (5 ml) is refluxed for 8 hours, and the solvent is removed in vacuum. The mixture is evaporated to dryness, and aqueous ammonia (25%, 50 ml) is added. The mixture was evaporated again. The oily residue was boiled in acetonitrile. The resulting precipitate was filtered and crystallized under ethanol/water mixture (10:1, 10 ml) to afford 0.55 g (23%) of product **3**, m.p. 185–188°C. IR spectrum

(solid, ν/cm^{-1}): 1613 s (C=O), 1580 w (C=C_{py}), 1229 s, 1184 s, 1030 s (SO₃).

3-(2-Ethoxycarbonylpyridin-1-ium-1-yl)propane-1-sulfonate (6)

According to the general procedure, a mixture of ethyl picolinate **5** (1.51 g, 0.01 mol), 1,3-propanesultone **2** (1.50 g, 0.012 mol) and acetonitrile (5 ml) is refluxed for 8 hours. Removal of the solvent in vacuum affords 2.02 g (74%) of **6**, m.p. 189–191°C (from ethanol).

IR spectrum (solid, ν/cm^{-1}): 1735 s (C=O), 1616 w (C=C_{py}), 1199 s, 1148 s, 1042 s (SO₃).

¹H-NMR (300.1 MHz, D₂O, δ , ppm, J/Hz): 1.39 (t, 3H, ³J=7.1, CH₂CH₃), 2.48 (m, 2H, ³J=7.3, -H₂CCH₂CH₂-), 3.04 (t, 2H, ³J=7.3, -CH₂SO₃), 4.53 (q, 2H, ³J=7.1, CH₂CH₃), 4.97 (t, 2H, ³J=7.3, -OCH₂-), 8.56 (d, 1H, ³J=8.0, H3), 8.23 (t, 1H, ³J=7.9, H4), 8.61 (t, 1H, ³J=7.9, H5), 9.03 (d, 1H, ³J=8.0, H6).

¹³C-NMR (75.5 MHz, D₂O, δ , ppm): 13.06, 16.76, 26.23, 26.40, 47.39, 59.18, 65.23, 130.62, 146.98, 147.95, 160.18.

Anal. calcd. for C₁₁H₁₅NO₅S · H₂O. Calculated: C, 45.35; H, 5.88; N, 4.80; S, 11.00. Found: C, 45.76; H, 5.61; N, 5.02; S, 11.46.

3-(2-Methoxycarbonylpyridin-1-ium-1-yl)propane-1-sulfonate (6').

According to the general procedure, a mixture of picolinic acid **5'** (1.23 g, 0.01 mol), 1,3-propanesultone **2** (1.50 g, 0.012 mol) and methanol (5 ml) is refluxed for 4 hours. Excess solvent is removed in vacuum. An oily product is isolated (0.5 g).

¹H-NMR (300.1 MHz, D₂O, δ , ppm, J/Hz): 2.48 (m, 2H, ³J=7.4, -H₂CCH₂CH₂-), 3.19 (t, 2H, ³J=7.4, -CH₂SO₃), 5.01 (t, 2H, ³J=7.4, -OCH₂-), 4.07 (s, 3H, C(O)OCH₃), 8.24 (d, 1H, ³J=8.1, H3), 8.62 (t, 1H, ³J=8.1, H4), 8.00 (t, 1H, ³J=8.1, H5), 9.12 (d, 1H, ³J=8.1, H6).

¹³C-NMR (75.5 MHz, D₂O, δ , ppm): 23.57, 47.90, 58.17, 66.93, 127.49, 128.11, 145.27, 147.19, 148.22, 162.19.

3-(Pyridin-1-ium-2-carbonyloxy)propane-1-sulfonate (7).

According to the general procedure, a mixture of picolinic acid **5'** (1.23 g, 0.01 mol), 1,3-propanesultone **2** (1.50 g, 0.012 mol) and methanol (5 ml) is stirred at ambient temperature for 7 days to afford 0.61 g (25%) of **7**, m.p. 227–230°C (from ethanol–water 10:1).

IR spectrum (solid, ν/cm^{-1}): 1737 s (C=O), 1611 w (C=C_{py}), 1208 s, 1138 s, 1027 s (SO₃).

¹H-NMR (300.1 MHz, D₂O, δ , ppm, J/Hz): 2.25 (m, 2H, ³J=7.3, -H₂CCH₂CH₂-), 3.07 (t, 2H, ³J=7.3, -CH₂SO₃), 4.61 (t, 2H, ³J=7.3, -OCH₂-), 8.60 (d, 1H, ³J=8.0, H3), 8.26 (t, 1H, ³J=7.9, H4), 8.73 (t, 1H, ³J=7.9, H5), 8.89 (d, 1H, ³J=8.0, H6).

¹³C-NMR (75.5 MHz, D₂O, δ , ppm): 23.59, 47.60, 66.50, 112.38, 122.42, 127.85, 130.73, 139.84, 143.25, 147.77, 160.18.

Anal. calcd. for C₉H₁₁NO₅S. Calculated: C, 44.075; H, 4.52; N, 5.71; S, 13.07. Found: C, 44.04; H, 4.51; N, 5.30; S, 13.57.

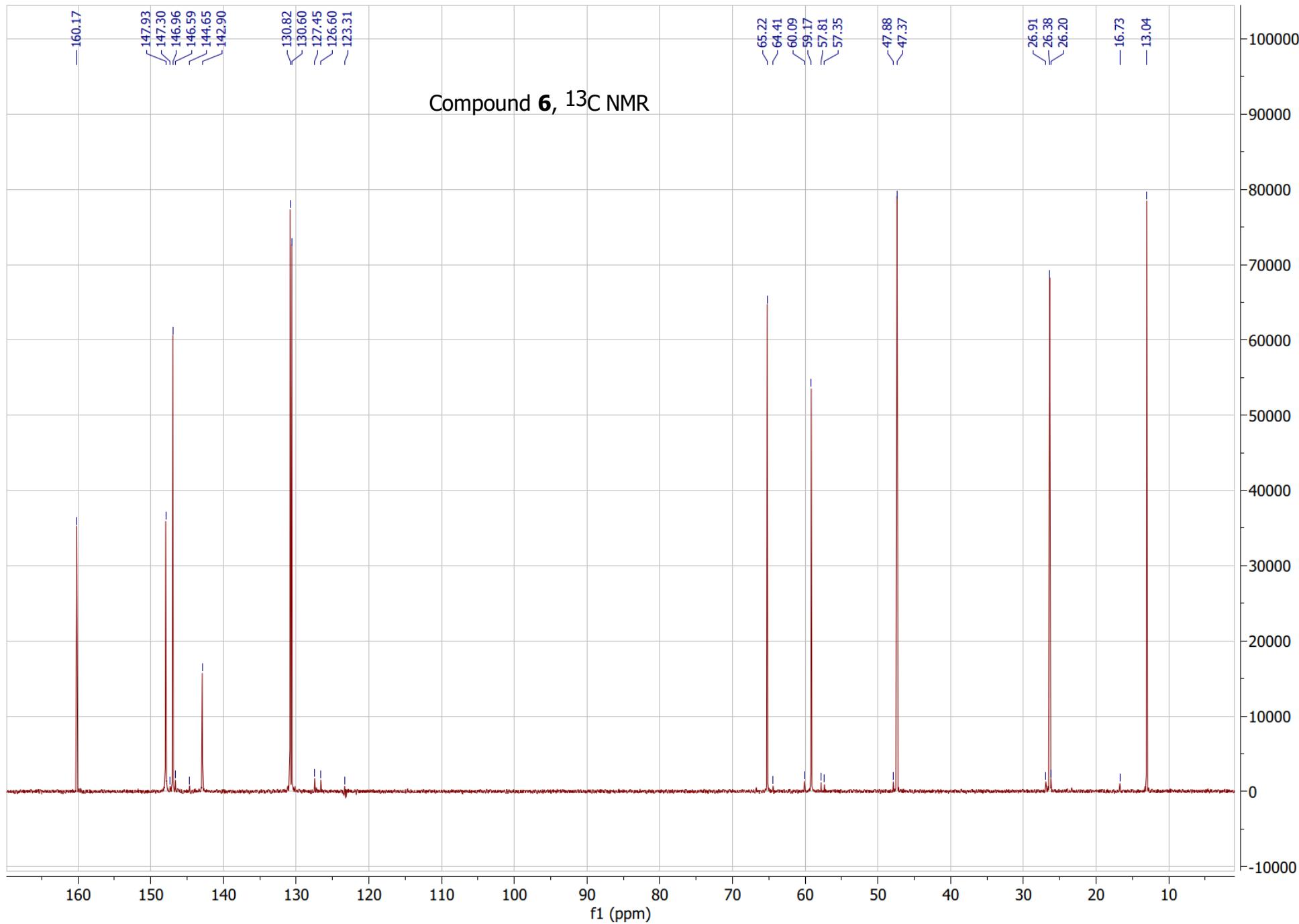
*3,3-Dimethyl-1-oxo-2,3-dihydro-1*H*-imidazo[1,5-*a*]pyridin-4-ium* *3-methoxypropane-1-sulfonate*
(8)

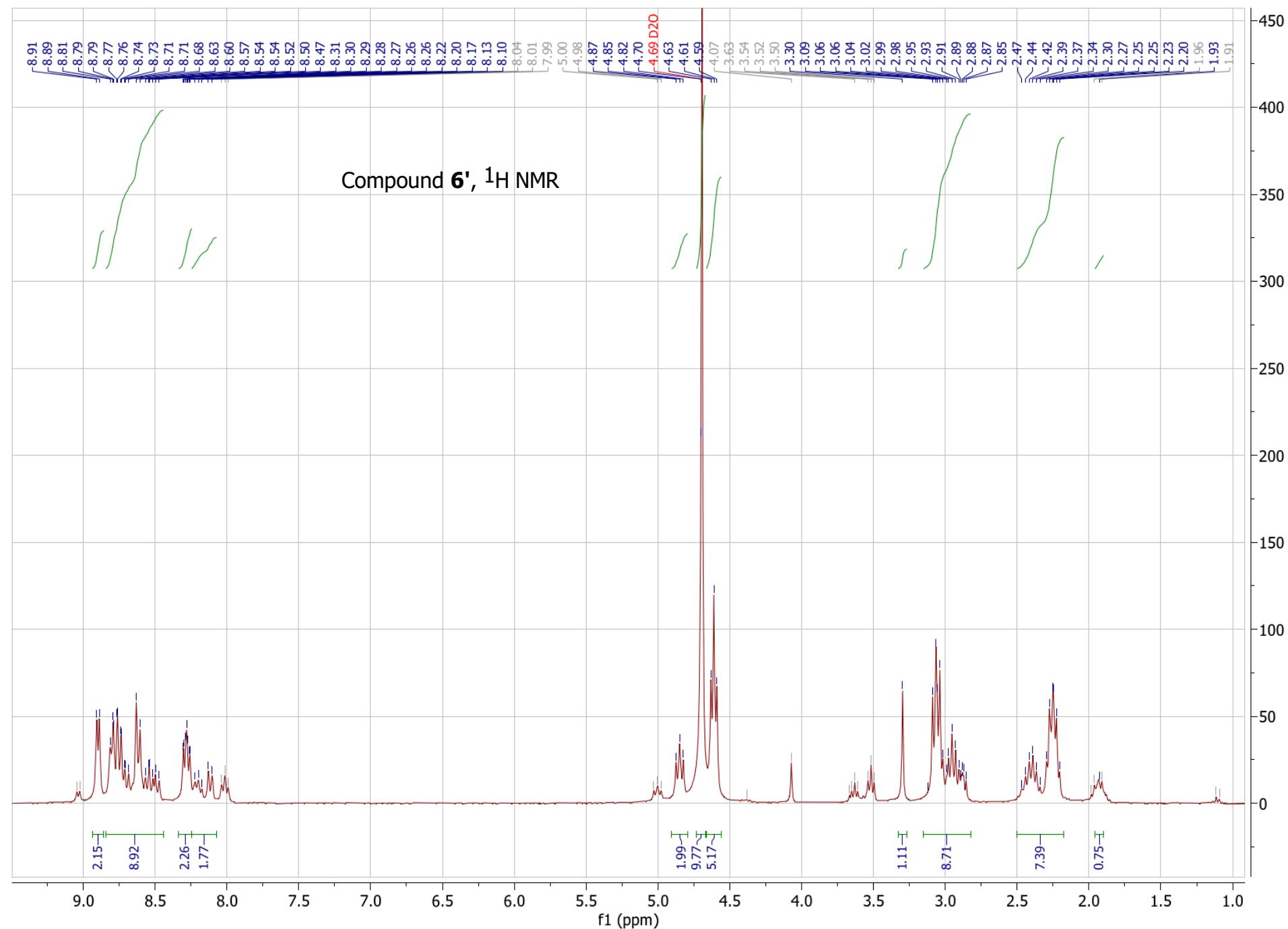
Salt **4** (0.82 g, 0.003 mol) was refluxed for 3 h in 10 ml of acetone (10 ml). Next day, the volatiles were removed in vacuum, the residue was stirred with diethyl ether for 2 h, and the crystals formed were filtered and dried to afford 0.51 g (62%) of unreacted compound **4** are obtained. By evaporation, 0.11 g (11.7%) of compound **8** was isolated, m.p. 170–174°C (methanol–acetone, 1:20). IR spectrum (solid, ν , cm^{-1}): 1729 s (C=O), 1637 w (C=C_{pyridine}), 1208 s, 1160 s, 1033 s (SO₃). ¹H-NMR (300.1 MHz, D₂O, δ , ppm, J /Hz): 1.84 (m, 2H, -H₂CCH₂CH₂-), 1.89 (s, 6H, 2CH₃), 2.84 (t, 2H, ³J=7.2, -CH₂SO₃), 3.25 (s, 3H, ³J=7.2, CH₃O), 3.47 (t, 2H, ³J=7.2, OCH₂-), 8.42 (d, 1H, ³J=8.1, H3), 8.31 (t, 1H, ³J=8.1, H4), 8.76 (t, 1H, ³J=8.1, H5), 9.31 (d, 1H, ³J=8.1, H6). ¹³C-NMR (75.5 MHz, D₂O, δ , ppm): 24.10, 26.48, 47.65, 57.69, 70.57, 84.15, 123.80, 130.93, 138.48, 141.63, 148.03, 158.99.

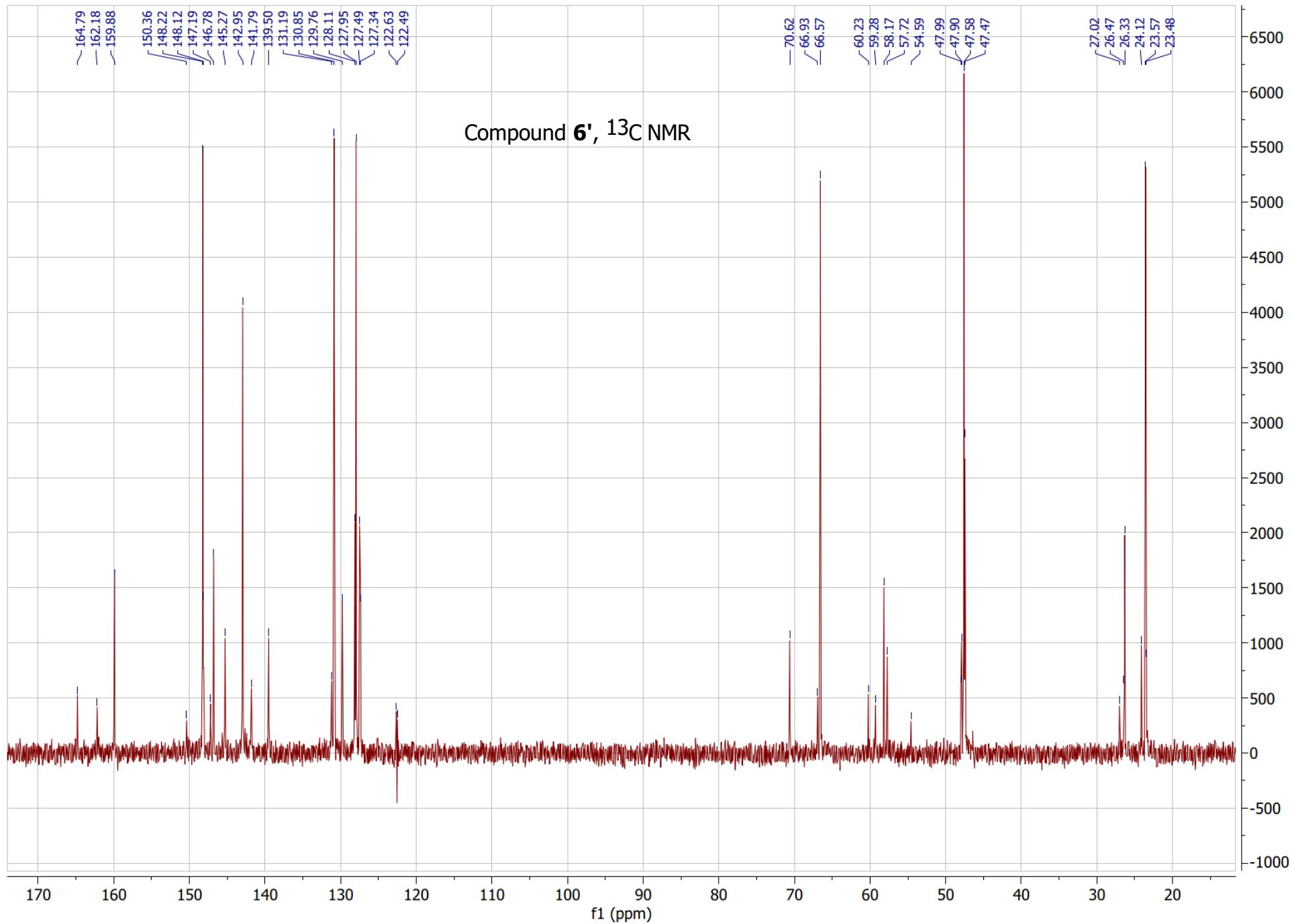
Anal. calcd. for C₁₃H_{23.5}N₂O_{6.75}S (**2** · 1.75H₂O): C, 44.87; H, 6.80; N, 8.05; S, 9.21.
 Found: C, 44.89; H, 6.18; N, 8.28; S, 10.53.

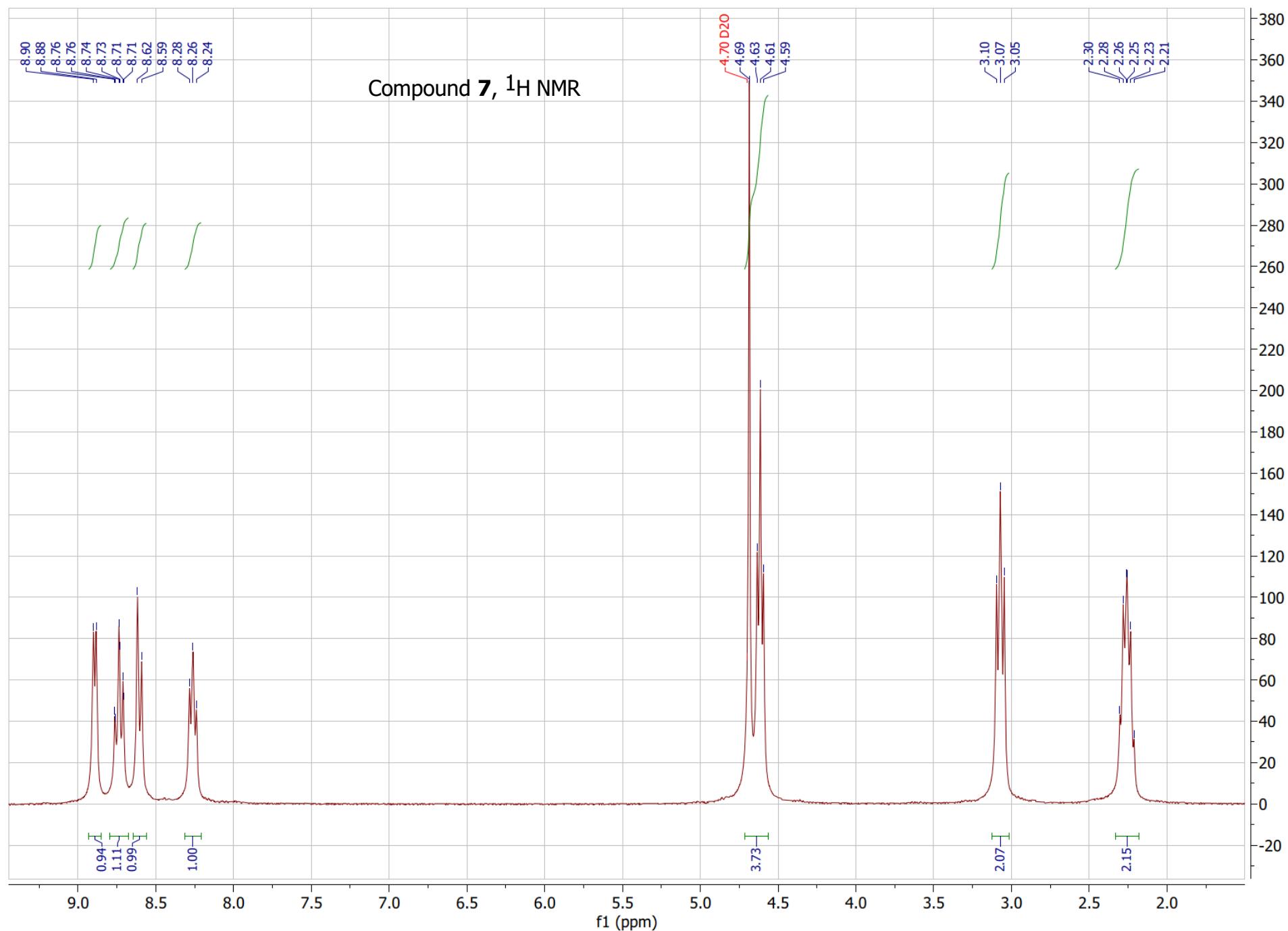
X-ray datasets for **6** were collected in Kurchatov Centre for Synchrotron Radiation and Nanotechnology using 'Belok' beamline. The intensities of collected reflections were integrated, merged and empirically corrected for absorption using XDS software [W. Kabsch, *Acta Cryst.*, **D66**, 133].

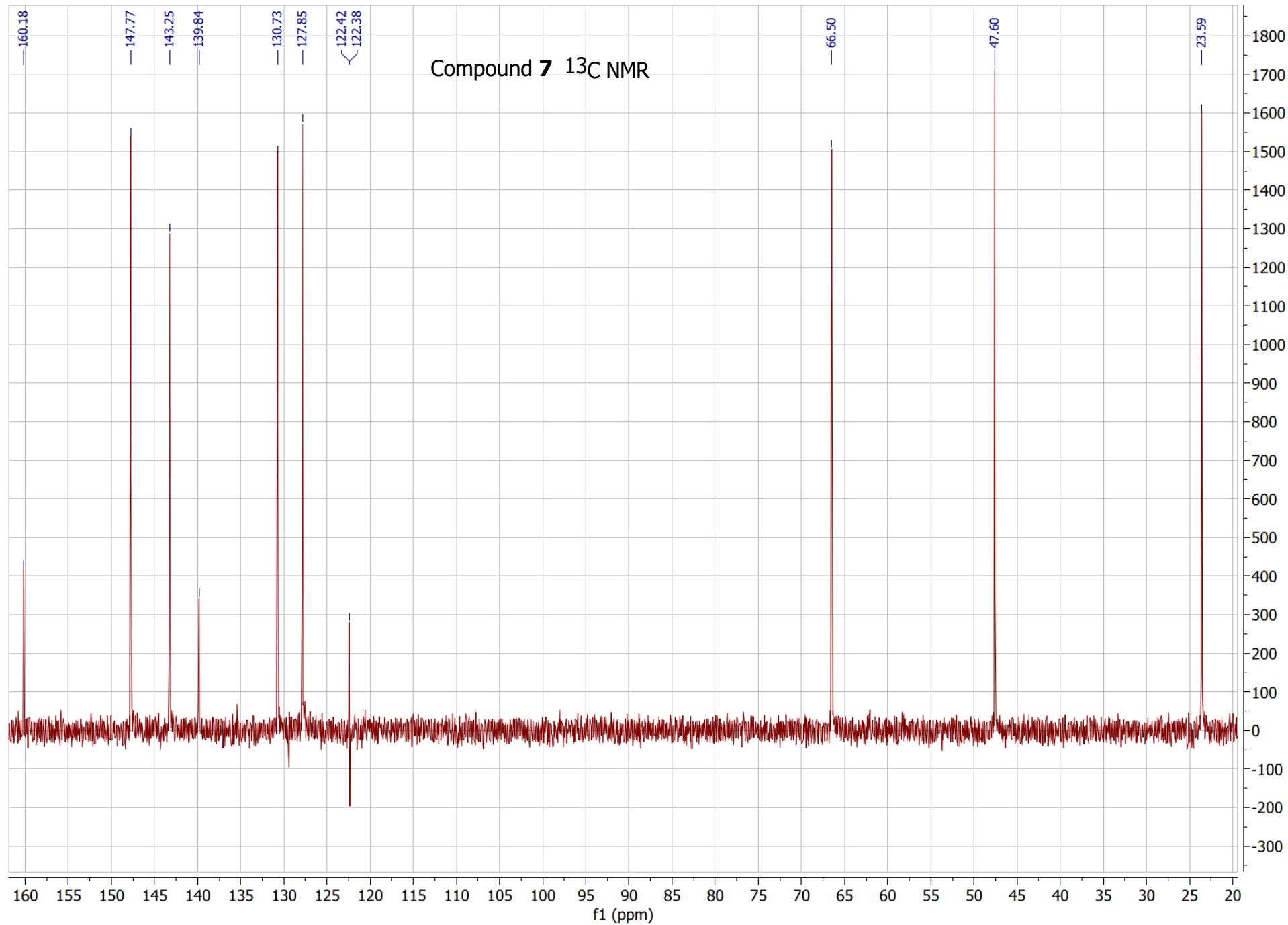

The structures were solved by dual-space algorithm using ShelXT software [G.M. Sheldrick, *Acta Cryst.*, 2015, **A71**, 3] and refined in anisotropic approximation for non-hydrogen atoms against F²(hkl) using ShelXL software [G.M. Sheldrick, *Acta Cryst.*, 2015, **C71**, 3]. Hydrogen atoms of methyl, methylene and aromatic fragments were calculated for idealised geometry and refined with constraints. All necessary information concerning X-ray structural study are given in Table 1S. Molecular graphics were drawn using OLEX2 software [O. V. Dolomanov et al, *J. Appl. Cryst.*, 2009, 42, 339].

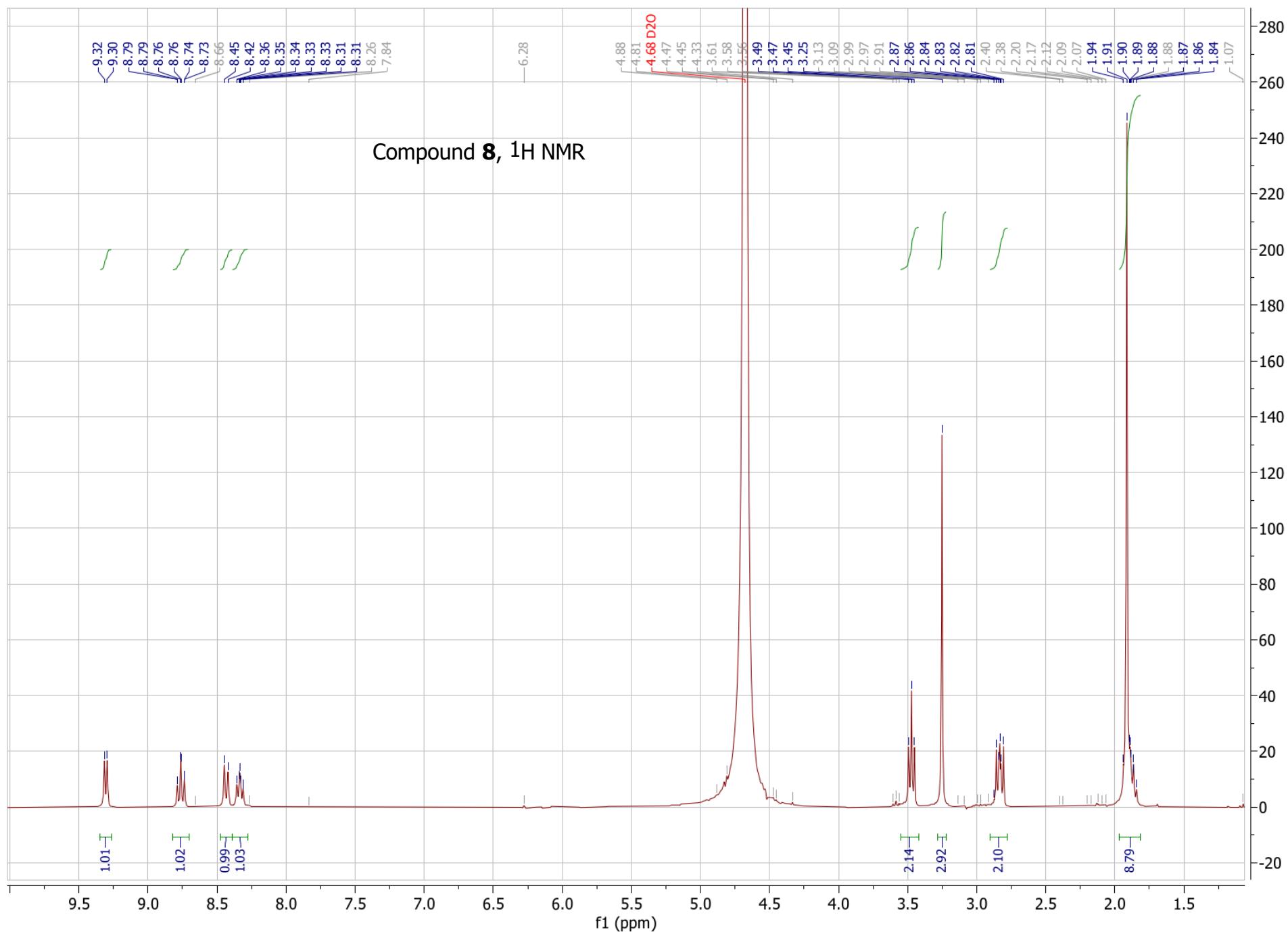

CCDC 2300128 contains supplementary crystallographic data for **6**. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via <https://www.ccdc.cam.ac.uk/structures>.

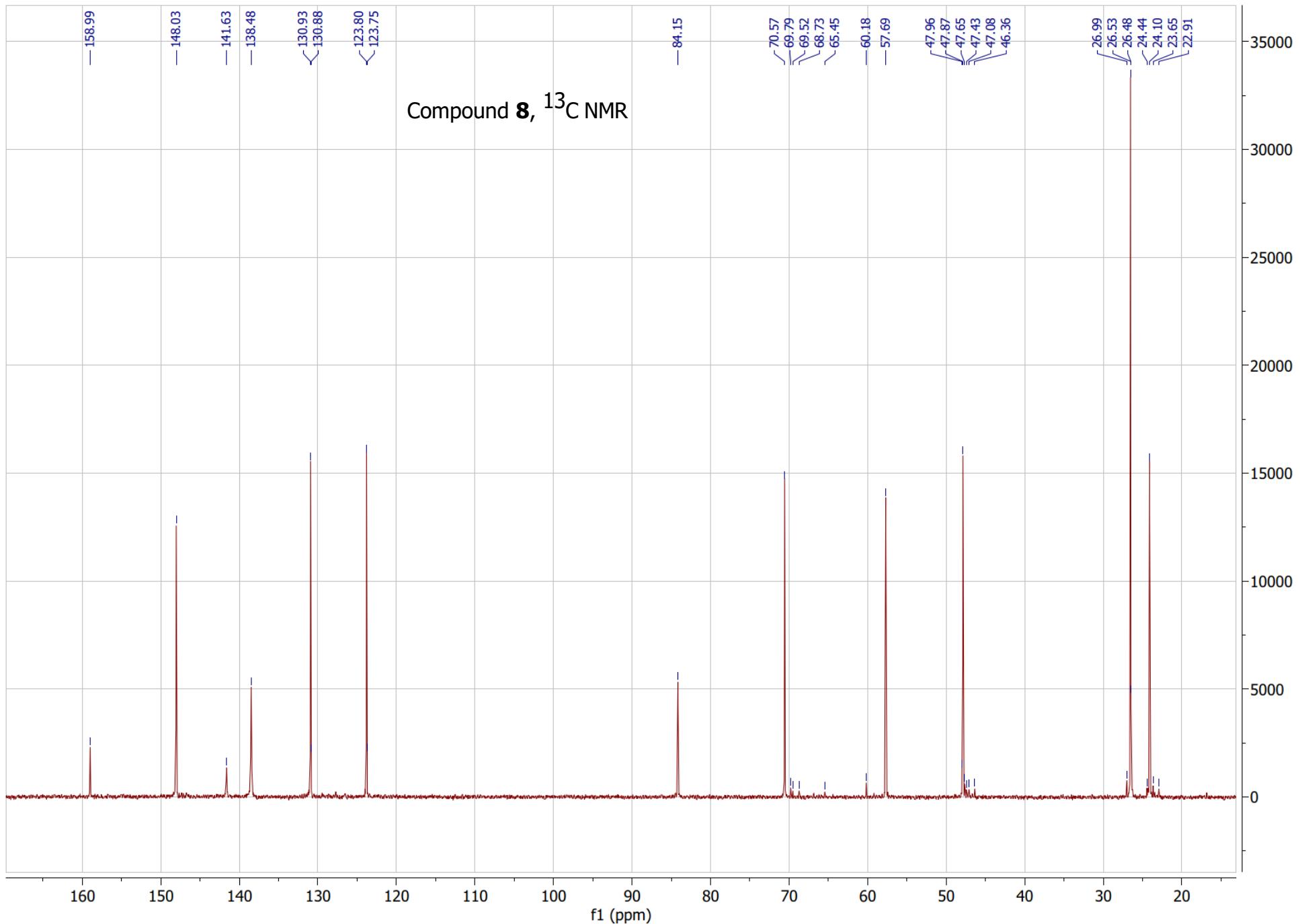

Table S1 Crystallographic data for **6**.


Formula moiety	C ₁₁ H ₁₅ NO ₅ S, H ₂ O
Brutto formula	C ₁₁ H ₁₇ NO ₆ S
Formula weight	291.31
Diffractometer	Marexperts dtb goniostat
Scan mode	ω scans
Anode [Wavelength, Å]	synchrotron [0.7527]
Crystal Dimensions, mm	0.05 × 0.05 × 0.12
Crystal color	colourless
Crystal system	monoclinic
<i>a</i> , Å	11.644(2)
<i>b</i> , Å	8.1330(16)
<i>c</i> , Å	15.090(3)


α , $^\circ$	90
β , $^\circ$	111.40(3)
γ , $^\circ$	90
Volume, \AA^3	1330.5(5)
Density, g cm^{-3}	1.454
Temperature, K	100
T_{\min}/T_{\max}	0.734/1.000
μ , mm^{-1}	0.308
Space group	P2 ₁ /n
Z	4
$F(000)$	616
Reflections collected	11697
Independent reflections	3404
Reflections ($I > 2\sigma(I)$)	3113
Parameters	177
R_{int}	0.0547
$2\theta_{\min} - 2\theta_{\max}$, $^\circ$	6.130 – 61.784
wR_2 (all reflections)	0.1064
$R_1(I > \sigma(I))$	0.0388
GOF	1.038
ρ_{\min}/ρ_{\max} , $e\text{\AA}^{-3}$	-0.443/0.390







checkCIF/PLATON report

Structure factors have been supplied for datablock(s) 6

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: 6

Bond precision: C-C = 0.0019 Å Wavelength=0.75270

Cell: a=11.644 (2) b=8.1330 (16) c=15.090 (3)
alpha=90 beta=111.40 (3) gamma=90

Temperature: 100 K

	Calculated	Reported
Volume	1330.5 (5)	1330.5 (5)
Space group	P 21/n	P 1 21/n 1
Hall group	-P 2yn	-P 2yn
Moiety formula	C11 H15 N 05 S, H2 O	C11 H15 N 05 S, H2 O
Sum formula	C11 H17 N 06 S	C11 H17 N 06 S
Mr	291.32	291.31
Dx, g cm ⁻³	1.454	1.454
Z	4	4
Mu (mm ⁻¹)	0.306	0.308
F000	616.0	616.0
F000'	616.96	
h, k, lmax	15,11,20	15,10,20
Nref	3532	3404
Tmin, Tmax	0.982, 0.985	0.734, 1.000
Tmin'	0.964	

Correction method= # Reported T Limits: Tmin=0.734 Tmax=1.000
AbsCorr = MULTI-SCAN

Data completeness= 0.964 Theta (max) = 30.892

R(reflections)= 0.0388 (3113) wR2 (reflections)=
0.1064 (3404)
S = 1.038 Npar= 177

The following ALERTS were generated. Each ALERT has the format
test-name_ALERT_alert-type_alert-level.

Click on the hyperlinks for more details of the test.

🟡 Alert level C

PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full value Low .	0.973	Why?
PLAT911_ALERT_3_C Missing FCF Refl Between Thmin & STh/L= 0.600	64	Report
PLAT913_ALERT_3_C Missing # of Very Strong Reflections in FCF	16	Note

🟢 Alert level G

ABSMU01_ALERT_1_G Calculation of _exptl_absorpt_correction_mu not performed for this radiation type.		
PLAT007_ALERT_5_G Number of Unrefined Donor-H Atoms	2	Report
PLAT092_ALERT_4_G Check: Wavelength Given is not Cu,Ga,Mo,Ag,In,Ka	0.75270	Ang.
PLAT180_ALERT_4_G Check Cell Rounding: # of Values Ending with 0 =	3	Note
PLAT432_ALERT_2_G Short Inter X...Y Contact O1 ..C9 .	2.87	Ang.
3/2-x,1/2+y,1/2-z =	2_655	Check
PLAT432_ALERT_2_G Short Inter X...Y Contact O1 ..C8 .	3.01	Ang.
3/2-x,1/2+y,1/2-z =	2_655	Check
PLAT720_ALERT_4_G Number of Unusual/Non-Standard Labels	2	Note
PLAT883_ALERT_1_G No Info/Value for _atom_sites_solution_primary .	Please Do !	
PLAT910_ALERT_3_G Missing # of FCF Reflection(s) Below Theta(Min).	2	Note
PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600	56	Note
PLAT941_ALERT_3_G Average HKL Measurement Multiplicity	3.4	Low
PLAT978_ALERT_2_G Number C-C Bonds with Positive Residual Density.	8	Info
PLAT984_ALERT_1_G The N-f'= 0.0051 Deviates from the B&C-Value	0.0071	Check
PLAT984_ALERT_1_G The O-f'= 0.0094 Deviates from the B&C-Value	0.0124	Check
PLAT984_ALERT_1_G The S-f'= 0.1230 Deviates from the B&C-Value	0.1367	Check

0 **ALERT level A** = Most likely a serious problem - resolve or explain

0 **ALERT level B** = A potentially serious problem, consider carefully

3 **ALERT level C** = Check. Ensure it is not caused by an omission or oversight

15 **ALERT level G** = General information/check it is not something unexpected

5 ALERT type 1 CIF construction/syntax error, inconsistent or missing data

3 ALERT type 2 Indicator that the structure model may be wrong or deficient

5 ALERT type 3 Indicator that the structure quality may be low

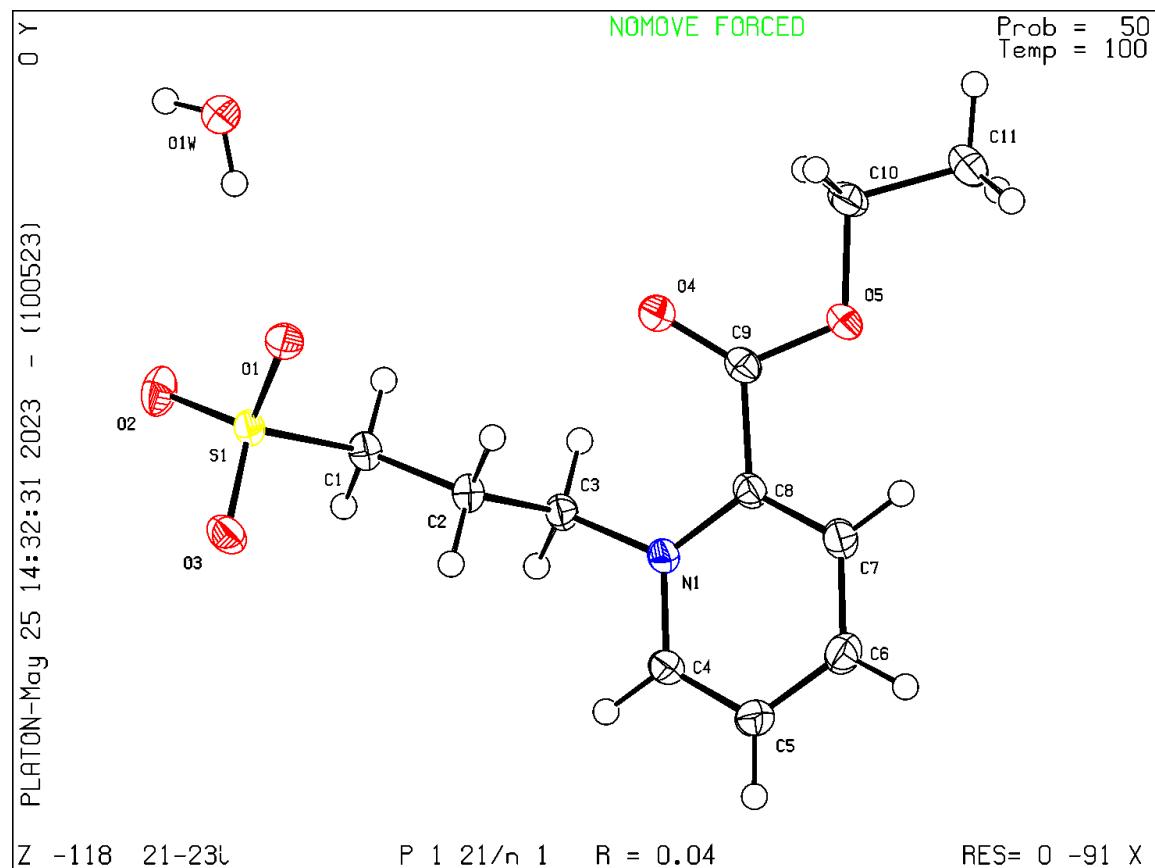
4 ALERT type 4 Improvement, methodology, query or suggestion

1 ALERT type 5 Informative message, check

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica*, *Journal of Applied Crystallography*, *Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.


Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 10/05/2023; check.def file version of 10/05/2023

Datablock 6 - ellipsoid plot

