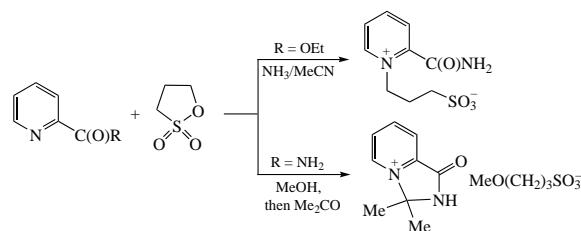


An expedient synthesis of a picolinamide-based betain bearing a 3-sulfonatopropyl substituent

Eugeniya P. Kamarova,^a Dmitry N. Lyahmun,^a Dmitry V. Tarasenko,^a Alexander A. Korlyukov,^{a,b} Pavel V. Dorovatovskii,^c Tatiana A. Shmigol,^a Sergey Yu. Bylikin,^d Yuri I. Baukov^a and Vadim V. Negrebetsky^{*a}

^a N. I. Pirogov Russian National Research Medical University, 117997 Moscow, Russian Federation.

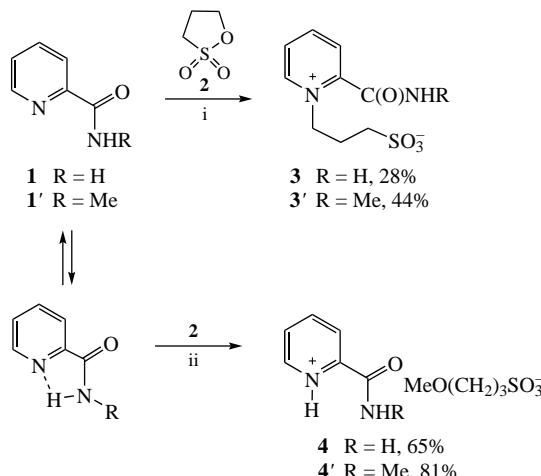
E-mail: negrebetsky1@rsmu.ru


^b A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119334 Moscow, Russian Federation

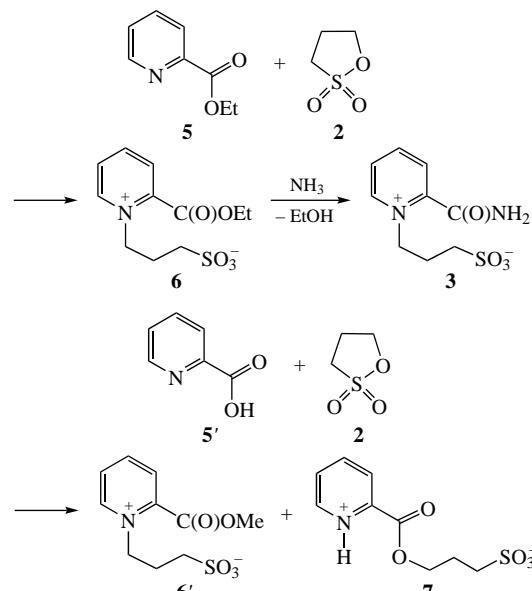
^c National Research Center 'Kurchatov Institute', 123098 Moscow, Russian Federation

^d The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK

DOI: 10.1016/j.mencom.2024.01.038


3-[2-(Aminocarbonyl)pyridinium-1-yl]propane-1-sulfonate, a promising medicinal betain, was prepared by a one-pot synthesis with a 89% yield via *N*-alkylation of ethyl picolinate with 1,3-propanesultone in MeCN followed by ammonolysis. The reaction involving picolinamide in MeOH followed by the treatment with acetone afforded a novel 3,3-dimethyl-1-oxo-2,3-dihydro-1*H*-imidazo[1,5-*a*]pyridin-4-ium 3-methoxypropane-1-sulfonate.

Keywords: picolinic acid derivatives, sulfobetains, sultones, alkylation, pyridinium salts, imidazo[1,5-*a*]pyridin-4-ium salts, NMR and FT-IR spectroscopy, X-ray study.


Over the last decade, the development of multi-target drugs became of considerable interest because of their advantages in the treatment of multifactor diseases and health conditions.^{1–3} The main direction of our works was the design of drugs for the treatment of neurodegenerative disorders^{4–6} which remain among the top-ranked causes of mortality worldwide.⁷ The potential building blocks for these drugs include pyridinecarboxylic acids and their functional derivatives, in particular, the products of the reaction between picolinamide **1** and 1,3-propanesultone.⁸

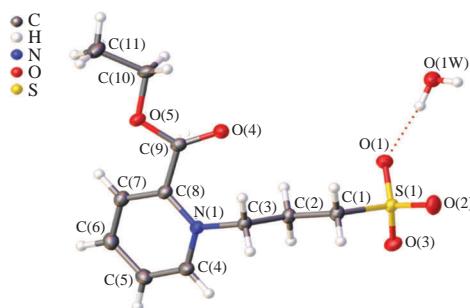
Although the biological functions of picolinic acid are not fully understood, its derivatives show a broad range of biological activity, including antimicrobial, neuroprotective, immunomodulatory and antiproliferative action.^{9–15} Previously,⁸ we have

shown that the direct reaction of picolinamides **1** and **1'** with 1,3-propanesultone **2** afforded betains **3** and **3'**, respectively (Scheme 1). The product yields were moderate, which could be a result of intramolecular hydrogen bonding in the substrate. Higher temperatures favored the formation of *H*-pyridinium by-products **4** and **4'**. The higher yields of isomeric sulfobetains prepared from nicotinamide and isonicotinamide were attributed to the absence of hydrogen bonding in the substrates.⁸

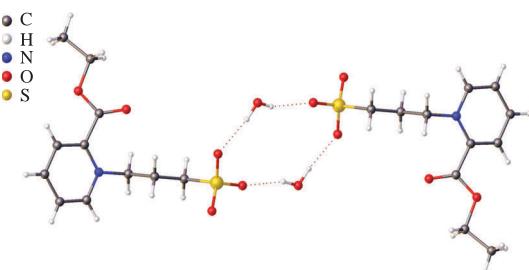
In order to optimize the synthesis of biologically significant sulfobetains derived from picolinamides, the reactions of

Scheme 2 Reagents and conditions: see Table 1.

Scheme 1 Reagents and conditions: i, MeOH, room temperature, 4 h; ii, MeOH, 40 °C, 4 h.


Table 1 Optimization of synthesis of sulfobetain **3**.

Entry	Reactant	Solvent	T/°C	Product	Yield (%)
1	1	MeOH	~20	3	28 (ref. 8)
2	5	MeCN	82	6	74
3	6	NH ₃ (aq.)	~20	3	64
4 ^a	5	MeCN, then NH ₃ (aq.)	82; ~20	3	89
5	5	EtOH, then NH ₃ (aq.)	78; ~20	3	23
6	5'	MeOH	~20	7	25
7	5'	MeOH	64	6' + 7	28+72

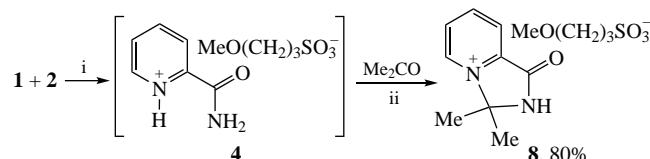

^a One-pot combination of steps of the entries 2 and 3.

compounds **5** and **5'** with 1,3-propanesultone under various conditions (solvents and reaction temperatures) were studied. In fact, the reaction of ethyl picolinate **5** with 1,3-propanesultone **2** in boiling acetonitrile produced propanesulfonate **6** with a yield of 74% (Scheme 2, Table 1, entry 2).

Salt **6** crystallizes as a 1:1 hydrate (Figure 1).[†] All bond lengths and angles in **6** fall within the ranges typical of pyridine derivatives and aliphatic sulfo acids. The pyridine ring and carboxy group in **6** are not coplanar, with the angle between corresponding planes being 28.80(5)°. In the crystal, its alkylsulfonate groups and solvated water molecules form centrosymmetric dimers with eight-membered rings *via* O–H···O bonds (Figure 2).

Figure 1 Molecular structure of monohydrate **6** showing thermal ellipsoids at the 50% probability level.

Figure 2 Centrosymmetric dimers with eight-membered rings formed *via* O–H···O bonds in crystal of **6**.


[†] *Crystal data for 6.* Crystals of **6** (C₁₇H₁₅NO₅S, H₂O, $M = 291.31$) are monoclinic, space group $P2_1/n$, at 100 K, $a = 11.644(2)$, $b = 8.1330(16)$ and $c = 15.090(3)$ Å, $V = 1330.5(5)$ Å³, $Z = 4$, $d_{\text{calc}} = 1.454$ g cm⁻³, $\mu = 0.308$ mm⁻¹, $F(000) = 616$, 11697 reflections were measured, and 3404 independent reflections ($R_{\text{int}} = 0.0547$) were used in a further refinement. The refinement converged to $wR_2 = 0.1064$ and $\text{GOF} = 1.038$ for all independent reflections [$R_1 = 0.0388$ was calculated against F for 3113 observed reflections with $I > 2\sigma(I)$]. X-ray diffraction dataset for **6** was collected in Kurchatov Centre for Synchrotron Radiation and Nanotechnology using 'Belok' beamline (Si111 monochromator, ω scan mode, $\lambda = 0.75027$ Å).

CCDC 2300128 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* <http://www.ccdc.cam.ac.uk>.

The subsequent reaction of ester **6** with aqueous ammonia affords the target carbamoyl derivative **3** with a 64% yield (see Table 1, entry 3), which is significantly higher than that reported earlier (28%, entry 1). Finally, the one-pot synthesis of **3** from ethyl picolinate **5** and 1,3-propanesultone followed by ammonolysis provides the highest yield of the target product (89%, entries 2 and 3).

At ambient temperature, picolinic acid **5'** reacts with 1,3-propanesultone **2** in methanol to produce 3-acycloxypropanesulfonate **7** with a 25% yield (see Scheme 2 and Table 1, entry 6). The formation of **7** is probably caused by the shielding effect of an intramolecular H-bond involving hydrogen of the carboxy group and an endocyclic nitrogen atom. Note that isonicotinic acid, in which such an interaction is impossible, reacts with 1,3-propanesultone to afford the product of *N*-alkylation with a 62% yield.¹⁶ The same reaction in boiling methanol (entry 7) yields a mixture that shows three signals for carbonyl groups (at 159.88, 162.18 and 164.79 ppm) in the ¹³C NMR spectrum (see Online Supplementary Materials). The ¹H NMR spectrum of this mixture shows one singlet (at 4.07 ppm) for methoxy group. Based on a comparative analysis of experimental and theoretically calculated spectra ¹H, ¹³C NMR, the mixture contains sulfonates **6** and **7** along with unreacted acid **5'** and sulfonic acid MeO(CH₂)₃SO₃H, the product of methanolysis of sultone **2**. This type of chemical transformation is similar to those observed in the reactions of carboxylates with 1,3-propanesultone **2** in methanol or without solvent at 120–150 °C, yielding mixtures of 3-acycloxypropanesulfonic acids with other products.¹⁶

The addition of acetone to a solution of salt **4** leads to novel heterocyclic salt **8** with a fragment of imidazolin-4-one (yield 80%, Scheme 3).

Scheme 3 Reagents and conditions: i, MeOH, reflux, 3 h; ii, acetone, reflux, 1.5 h.

In conclusion, the optimization of the synthesis of promising biologically active sulfobetains derived from pyridinecarboxylic acids resulted in the two-stage one-pot procedure that furnished picolinamide derivatives with high yields. The treatment of *N*-protonated picolinamide by-product with acetone afforded the first example of a novel type of heterocyclic salts with a fragment of imidazolin-4-one. According to PASS Online,¹⁷ the latter compound is likely to demonstrate immunostimulatory and antitumor activity.

This research was funded by the Russian Science Foundation (grant no. 21-73-20250).

Online Supplementary Materials

Supplementary data associated with this article can be found in the online version at doi: 10.1016/j.mencom.2024.01.038.

References

- J. de Oliveira Viana, M. Barbalho Félix, M. dos Santos Maia, V. de Lima Serafim, S. L. Scotti and M. T. Scotti, *Braz. J. Pharm. Sci.*, 2018, **54**, e01010.
- X. H. Makhoba, C. Viegas, Jr., R. A. Mosa, F. P. D. Viegas and O. J. Poole, *Drug Des., Dev. Ther.*, 2020, **14**, 3235.
- A. Talevi, *Front. Pharmacol.*, 2015, **6**, 205.

4 D. A. Borozdenko, A. A. Ezdoglian, T. A. Shmigol, D. I. Gonchar, D. N. Lyakhmun, D. V. Tarasenko, Y. V. Golubev, E. A. Cherkashova, D. D. Namestnikova, I. L. Gubskiy, A. A. Lagunin, L. V. Gubsky, V. P. Chekhonin, S. S. Borisevich, M. A. Gureev, A. D. Shagina, N. M. Kiseleva, V. V. Negrebetsky and Yu. I. Baukov, *Molecules*, 2021, **26**, 6124.

5 D. A. Borozdenko, D. N. Lyakhmun, Y. V. Golubev, D. V. Tarasenko, N. M. Kiseleva and V. V. Negrebetsky, *Bull. RSMU*, 2020, no. 1, 49 (*Vestnik RGMU*, 2020, no. 1, 51).

6 D. A. Borozdenko, T. A. Shmigol, A. A. Ezdoglian, D. I. Gonchar, N. Y. Karpechenko, D. N. Lyakhmun, A. D. Shagina, E. A. Cherkashova, D. D. Namestnikova, I. L. Gubskiy, A. A. Chernysheva, N. M. Kiseleva, V. V. Negrebetsky and Yu. I. Baukov, *Molecules*, 2022, **27**, 5488.

7 W. Johnson, O. Onuma, M. Owolabi and S. Sachdev, *Bull. W. H. O.*, 2016, **94**, 634.

8 E. P. Kramarova, S. S. Borisevich, E. M. Khamitov, A. A. Korlyukov, P. V. Dorovatovskii, A. D. Shagina, K. S. Mineev, D. V. Tarasenko, R. A. Novikov, A. A. Lagunin, I. Boldyrev, A. A. Ezdoglian, N. Y. Karpechenko, T. A. Shmigol, Y. I. Baukov and V. V. Negrebetsky, *Molecules*, 2022, **27**, 7542.

9 K. Ding, M. E. McGee-Lawrence, H. Kaiser, A. K. Sharma, J. L. Pierce, D. L. Irsik, W. B. Bollag, J. Xu, Q. Zhong, W. Hill, X.-M. Shi, S. Fulzele, E. J. Kennedy, M. Elsalanty, M. W. Hamrick and C. M. Isales, *Exp. Gerontol.*, 2020, **133**, 1108856.

10 K. Oluwagbemigun, A. Anesi, G. Clarke, M. Schmid, F. Mattivi and U. Nöthlings, *Int. J. Tryptophan Res.*, 2021, **14**, 11786469211041376.

11 M. N. Mithaiwala, D. Santana-Coelho, G. A. Porter and J. C. O'Connor, *Cells*, 2021, **10**, 1548.

12 J. Prodinger, L. J. Loacker, R. L. J. Schmidt, F. Ratzinger, G. Greiner, N. Witzeneder, G. Hoermann, S. Jutz, W. F. Pickl, P. Steinberger, R. Marculescu and K. G. Schmetterer, *J. Leukocyte Biol.*, 2016, **99**, 583.

13 M. C. Bosco, A. Rapisarda, S. Massazza, G. Melillo, H. Young and L. Varesio, *J. Immunol.*, 2000, **164**, 3283.

14 A. Rapisarda, S. Pastorino, S. Massazza, L. Varesio and M. C. Bosco, *Cell. Immunol.*, 2002, **220**, 70.

15 A. A. Fadda, R. El-Demerdashi El-Mekawy and M. T. Abdel Aal, *Phosphorus, Sulfur Silicon Relat. Elem.*, 2016, **191**, 1148.

16 E. E. Gilbert, *Sulfonation and Related Reactions*, Wiley, New York, 1965.

17 D. A. Filimonov, A. A. Lagunin, T. A. Gloriozova, A. V. Rudiik, D. S. Druzhilovskii, P. V. Pogodin and V. V. Poroikov, *Chem. Heterocycl. Compd.*, 2014, **50**, 444 (*Khim. Geterotsikl. Soedin.*, 2014, 483).

Received: 12th October 2023; Com. 23/7268