

Molecular weight of polyanion affects the biological activity of interpolycomplexes

Anastasiya Yu. Lokova, Arina Yu. Rosova, Irina G. Panova, Nataliya G. Loiko, Yuriy A. Nikolaev and Alexander A. Yaroslavov

A. Poly(diallyldimethylammonium chloride) (PDADMAC) with an average molecular mass $M_w = 470$ kDa (CPS Chem. Com. Inc.) was used as a cationic polymer; two sodium polyacrylate samples with $M_w = 8$ (PANa1) and 250 kDa (PANa2) (Sigma-Aldrich) were used as anionic polymers. PDADMAC was dissolved in 10^{-3} M Tris buffer solution with pH 7 additionally containing 10^{-2} M NaCl and mixed with a sodium polyacrylate (PANa) solution in the same buffer. The mixing resulted in an electrostatic PDADMAC-to-PANa complexation and formation of IPECs, stabilized by ionic bonds between oppositely charged groups of PDADMAC and PANa.^{S1,S2} The salt solution provided an equilibrium distribution of PANa chains between PDADMAC chains as described earlier.^{S3} Concentrations of polymers were expressed in moles of quaternary amino PDADMAC groups $[N^+]$ and carboxylic PANa groups $[COO^-]$ per liter.

B. The hydrodynamic diameter of the particles was measured using dynamic light scattering at a fixed scattering angle (90°) in a thermostatic cell ($22^\circ C$) with a ZetaPlus instrument (Brookhaven, USA), their electrophoretic mobility (EPM) using laser microelectrophoresis with a ZetaPlus instrument (Brookhaven, USA). The results were processed using software provided by the manufacturer. All experiments were performed with 5-7 repetitions. Statistical data processing was carried out with the Excel program.

C. Anionic palmitoyloleoylphosphatidylserine (POPS¹⁻) and zwitterionic dioleoylphosphatidylcholine (DOPC) (Avanti, USA, Houston, TX) were used as received. Liposomes were prepared by sonication with a standard protocol.^{S4} The required amount of lipids was dissolved in chloroform; the organic solvent was removed under vacuum with Laborota-4000 (Heidolph, Germany)) at $30^\circ C$. The lipid film was dispersed by vortex in a buffer solution. The resulting dispersion was treated with ultrasound using an ultrasonic homogenizer (Drawell JY92-

IIN, China). The resulting liposomes were purified from titanium dust by centrifugation for 5 minutes at 11,000 rpm. Molar ratio of lipids [POPS¹⁻]/[DOPC] in liposomes was 20/80. The average liposome diameter was of 85 ± 5 nm, electrophoretic mobility was of -3.75 ± 0.1 ($\mu\text{m/s}/(\text{V/cm})$).

D. Minimum inhibitory concentrations (MIC) for polymer formulations were determined towards gram-negative bacteria *Pseudomonas aeruginosa* 4.8.1 using the standard procedure.⁵⁵ Briefly, an aqueous polymer solution was added to glass test-tubes with M9 medium – an aqueous solution, which contained a mixture of glucose and inorganic salts with a total salt concentration of about 0.08 M; the polymer concentration ranged from 0 to 2 wt%. Then, the tubes were inoculated with the bacteria *P. aeruginosa* and placed on a shaker at 28 °C; 2 days after, the growth of microorganisms was assessed. The lowest polymer concentration, at which no growth of the test cultures was observed visually, was taken as MIC.

References

S1 O. A. Novoskoltseva, E. V. Chernikova, V. B. Rogacheva and A. B. Zezin, *Polymer Science Series B*, 2015, **57**, 132.

S2 I. G. Panova, A. Yu. Lokova, D. V. Bagrov, N. G. Loiko, Yu. A. Nikolaev and A. A. Yaroslavov, *Mendeleev Commun.*, 2023, **33**, 562.

S3 V. A. Kabanov, *Russ. Chem. Rev.*, 2005, **74**, 3.

S4 V. V. Spiridonov, I. G. Panova, A. V. Sybachin, V. V. Kuznetsov, M. I. Afanasov, Y. A. Alekhina and A. A. Yaroslavov, *Polymer Science Series A*, 2019, **61**, 296.

S5 I. G. Panova, E. A. Shevaleva, I. A. Gritskova, N. G. Loiko, Y. A. Nikolaev, O. A. Novoskoltseva and A. A. Yaroslavov, *Polymers*, 2022, **14**, 4598.