

In two steps from simple *meso*-tetraphenylporphyrin to its derivatives exhaustively β -substituted at the ‘Eastern half’

Agnieszka Mikus
Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland.
E-mail: a.mikus@ch.pw.edu.pl

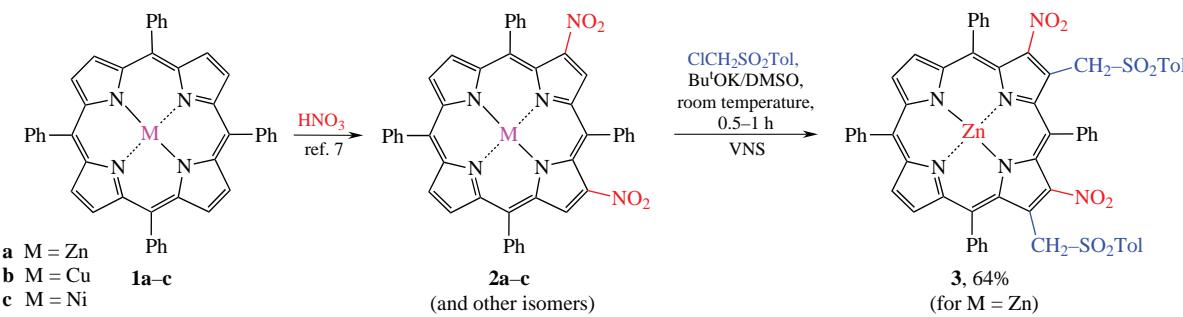
DOI: 10.1016/j.mencom.2024.01.021

The two-step synthesis of porphyrin derivatives, exhaustively β -substituted at the ‘Eastern half’, starting from *meso*-tetraphenylporphyrin chelates (Cu^{II} , Zn^{II} , Ni^{II}) upon their reaction with nitric acid, is described. The intermediates obtained (mainly dinitro-derivatives) in the reaction with carbanions bearing a leaving group X at the reactive centre give tetrasubstituted at the β -positions products, the ones of vicarious nucleophilic substitution of hydrogen. The products seem to be potential anticancer PDT agents, practically unavailable by other methods.

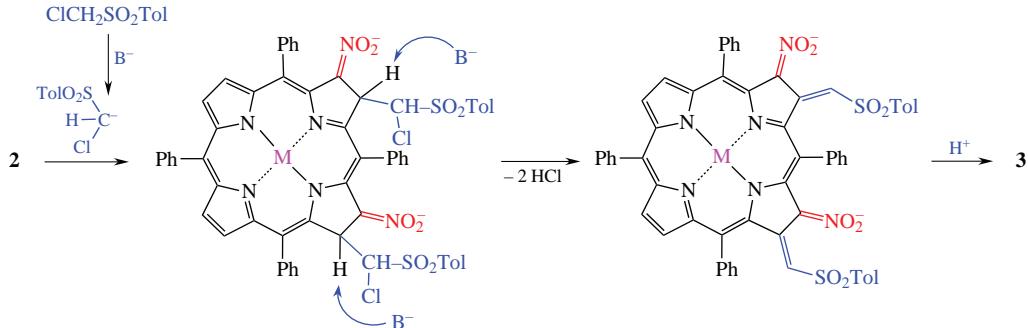
Keywords: porphyrin complexes, β -derivatization, carbanions, vicarious nucleophilic substitution, nitro group, photosensitizers, photodynamic therapy (PDT).

Porphyrins are intensively studied in recent years.^{1–3} These systems are present in well-known biological materials (*e.g.* chlorophyll, heme, or vitamin B₁₂) and play important roles in nature. Of significant importance is the selective functionalization of readily available porphyrins, *e.g.*, in this way the porphyrin hydrophobic moieties can be transformed into the hydrophilic ones. The compounds thus obtained, being soluble in physiological milieu, may be considered as potential photodynamic therapy agents.^{4–6}

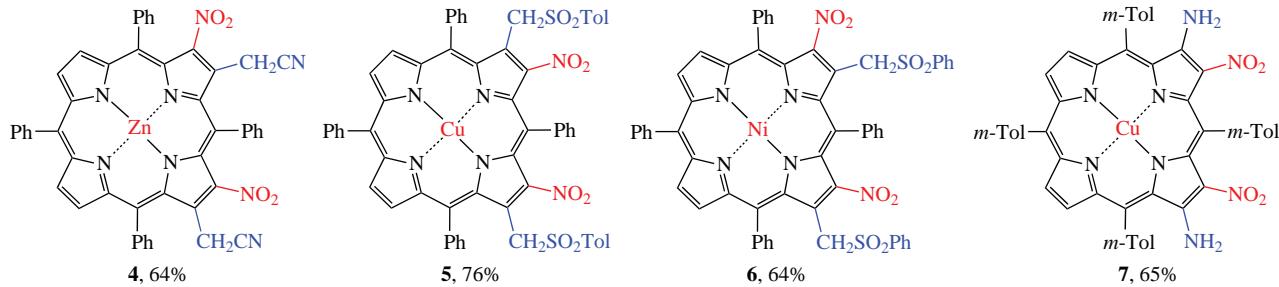
Our ongoing research, among others, is focused on the synthesis of highly functionalized porphyrins. Earlier,^{7,8} we elaborated a convenient synthesis of β,β -dinitroporphyrins (and porphyrinates) utilizing electrophilic nitration with nitric acid in chloroform (Scheme 1). For zinc, copper, and nickel chelates of *meso*-tetraphenylporphyrin (*m*-TPP), usually 2,7-dinitro and 3,7-dinitro derivatives are formed as the major products; however, we have demonstrated that even all the five possible isomers could be isolated.^{7(a)} These compounds seem promising for nucleophilic substitution of hydrogen. This type of substitution, so called vicarious nucleophilic substitution (VNS), is a useful tool for introduction of a variety of functional groups into nitroaromatic rings (for review concerning nitroarenes, see ref. 9).


The VNS process consists in addition of carbanions, *O*-anions, or *N*-anions bearing a leaving group X at the reactive centre to nitroarenes at positions occupied by hydrogen to form σ^{H} -adducts that subsequently undergo base-induced β -elimination of HX to give products of nucleophilic substitution of hydrogen (see mechanism presented for porphyrins in Scheme 1; below the main reaction). The presence of each NO_2 group enables substitution of one H-atom. Some other electrophilic aromatic compounds that do not contain activating NO_2 group (heterocyclic and carbocyclic) undergo this reaction as well, *e.g.* triazines,^{10,11} quinoxalines,¹² benzothiazole,¹⁰ pteridines,¹³ fused quinones,¹⁴ cyano naphthalene derivatives,^{15,16} cyano-1,6-methano[10]-annulenes,¹⁷ *etc.*

Combination of the above two reactions (electrophilic dinitration and VNS) gives an opportunity of easy and fast synthesis of tetrasubstituted porphyrins. We applied it herein. It is worth mentioning that the selected substrates in this case could make it possible to synthesize more attractive, but at the same time, more difficult to be accessed, porphyrins exhaustively β -substituted at the ‘Eastern half’.


Many attempts were undertaken in this area and there are some elegant total syntheses of such porphyrin derivatives described in the literature, however with low overall yields varying from 0.04 to *ca.* 7% (see: Battersby,¹⁸ Jacobi,¹⁹ or Woodward²⁰). Admittedly, they had more sophisticated structures, but unfortunately they were achievable only in multi-step transformations. In our methodology, this is not the case and the preparation is very convenient.

Thus, the respective dinitro-porphyrins of type **2** (bearing nitro groups in the neighbouring pyrrole rings) enable to use this attractive and facile approach to the desired ‘half-exhaustively’ β -substituted porphyrins. As it was mentioned above, the preparation and isolation of β,β -dinitro intermediates were elaborated in details in our previous investigations. We have demonstrated that even all of the five possible isomers could be isolated.^{7(a)} An important point is the fact that primary substrate for this synthesis, *m*-TPP, is commercially available. If needed, it can be also easily synthesized in multi-gram scale in laboratory^{21–23} and converted quantitatively into complexes that were used here for preparation of dinitro-chelates **2**. They would react readily with carbanions.


For example, zinc dinitroporphyrinate **2a** attaches carbanion of chloromethyl *p*-tolyl sulfone followed by base-induced β -elimination to give VNS product bearing new group at the position neighbouring to NO_2 . Similarly, the substitution takes place at the position next to the second nitro group affording thus the target product **3** in good yield (64%). The reaction is easy to carry out, proceeds very fast, and is high yielding. The structure

MECHANISM:

OTHER PRODUCTS:

Scheme 1

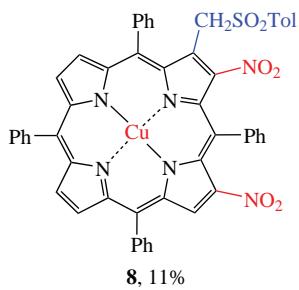
of the carbanion can be designed any way one can want, enabling access to a variety of substitution patterns on two neighbouring pyrrole rings in the macrocyclic skeleton (see examples **3–7** in Scheme 1). Also the mutual orientation of NO_2 groups can be different. Furthermore, various metal cations (Zn^{2+} , Cu^{2+} , Ni^{2+}) can be coordinated by the porphyrin core ring. This gives finally an opportunity for preparation of broad spectrum of the title products.

Herein, we have demonstrated this approach with four examples.[†] In the reaction presented above we achieved a yield of 64%. The yields of other products were also good and even higher. The use of *p*-chlorophenoxyacetonitrile

(*p*- $\text{ClC}_6\text{H}_4\text{OCH}_2\text{CN}$) with dinitroporphyrinate **2a** led to the corresponding product **4** with the same yield of 64%, while the reaction of copper complex of 3,7-dinitro-5,10,15,20-tetraphenylporphyrin with chloromethyl *p*-tolyl sulfone allowed us to obtain product **5** in higher yield of 76%. In the latter case small amounts (11%) of trisubstituted by-product **8** were also observed. This increased the total yield of the reaction products up to 87%.

Finally, nickel chelate **2c** reacting with carbanion of chloromethyl phenyl sulfone ($\text{CICH}_2\text{SO}_2\text{Ph}$) gave product **6** (64%). This methodology has been immediately used in our group in other projects.²⁴ For example, some initial studies allowed us to obtain porphyrins tetrasubstituted with nitrogen-containing

(76%) and [3,7-dinitro-2-(*p*-tolylsulfonylmethyl)-5,10,15,20-tetraphenylporphyrinato]copper(II) (**8**; 11%).


Other reactions, modifications.

*Reaction of (2,7-dinitro-5,10,15,20-tetraphenylporphyrinato)zinc(II) (**2a**) with chloromethyl *p*-tolyl sulfone.* Compound **2a** (49.8 mg, 0.065 mmol) and chloromethyl *p*-tolyl sulfone (54 mg, 0.26 mmol) in DMSO (8 ml) were added to a stirred solution of $\text{Bu}'\text{OK}$ (74 mg, 0.66 mmol) in anhydrous DMSO (8 ml); after *ca.* 30 min additional portion of $\text{Bu}'\text{OK}$ (74 mg, 0.66 mmol) in DMSO (1 ml) was slowly syringed followed by addition of more chloromethyl *p*-tolyl sulfone (40 mg, 0.20 mmol); eluent for chromatography: CHCl_3 , then $\text{CHCl}_3/\text{MeOH}$ (100:1). Yield of product **3** was 46.0 mg (64%).

*Reaction of (2,7-dinitro-5,10,15,20-tetraphenylporphyrinato)zinc(II) (**2a**) with *p*-chlorophenoxyacetonitrile.* Compound **2a** (50.4 mg, 0.066 mmol) and *p*-chlorophenoxyacetonitrile (45 mg, 0.27 mmol) in anhydrous DMSO (6 ml) were added to a stirred solution of $\text{Bu}'\text{OK}$ (75 mg, 0.67 mmol) in DMSO (8 ml); after 1 and 2 h the additional portions of $\text{Bu}'\text{OK}$ (60 mg, 0.53 mmol) in DMSO (1 ml) were syringed

[†] All reactions were carried out under argon in light-shielded flasks equipped with a septum. Preparation of starting dinitro-5,10,15,20-tetraphenylporphyrinates was described previously.^{7,8} Carbanion precursors were obtained according to known procedures (all the references have been collected and cited in our previous paper²⁸). All the products were isolated by column chromatography (silica gel, 230–400 mesh; Merck AG).

*[3,7-Dinitro-2,8-bis(*p*-tolylsulfonylmethyl)-5,10,15,20-tetraphenylporphyrinato]copper(II) (**5**) (general procedure).* To a stirred solution of $\text{Bu}'\text{OK}$ (58 mg, 0.52 mmol) in anhydrous DMSO (6 ml) a mixture of copper(II) 3,7-dinitro-5,10,15,20-tetraphenylporphyrinate (44 mg, 0.057 mmol) and chloromethyl *p*-tolyl sulfone (50 mg, 0.24 mmol) in anhydrous DMSO (6 ml) was syringed for 5 min at room temperature. The reaction was continued for 1 h, and then the mixture was poured into HCl containing ice (3% aq., 150 ml). The precipitate was filtered off, washed with water (300 ml), and dried. The crude product was dissolved in small amount of CHCl_3 and purified using column chromatography (eluent: $\text{CHCl}_3/\text{MeOH}$; 100:1) to give 47.7 mg of the title product **5**

groups (*e.g.* **7**²⁴) that are sought in many areas of porphyrin chemistry. We confirmed the structures of products obtained using standard spectroscopic methods: ¹H NMR (except for the paramagnetic chelates of copper), UV/VIS, MS, and HR-MS.[‡]

The new groups introduced into porphyrin scaffold, *e.g.* CN, allow a broad spectrum of further transformations (hydrolysis to amides and carboxylic acids, reduction to aminomethyl derivatives, subsequent reactions of amines, a variety of reactions with organometallic reagents, *etc.*)²⁵. Finally, it is worth mentioning that NO₂ group also gives plenty of synthetic possibilities.

In summary, the use of two-step approach described in this communication leads to useful target molecules, namely exhaustively β -substituted porphyrins at the *Eastern half*. This easy and fast preparation is very convenient. A broad spectrum of carbanions that can be used in VNS step⁹ allows synthesizing numerous differently designed porphyrin-like moieties. They are valuable materials themselves and versatile intermediates for subsequent transformations into compounds of a high degree of complexity – ready to use in many areas of chemistry and related fields.^{26,27} A number of them are potential sensitizers for anticancer photodynamic therapy.^{4–6}

followed by addition of two portions of *p*-chlorophenoxyacetonitrile (36 mg, 0.21 mmol) in DMSO (1 ml), and the reaction was continued for the next 30 min; eluent for chromatography: CHCl₃, then CHCl₃/MeOH (100:1). Yield of product **4** was 35.7 mg (64%).

*Reaction of (2,7-dinitro-5,10,15,20-tetraphenylporphyrinato)nickel(II) (**2c**) with chloromethyl phenyl sulfone.* Compound **2c** (34.4 mg, 0.045 mmol) and ClCH₂SO₂Ph (45.6 mg, 0.24 mmol) dissolved in DMSO (12 ml) were added to Bu⁴OK similarly to the above procedures (the substrates dissolved fully after \sim 1 h). After 15 min, an additional portion of Bu⁴OK (26 mg, 0.23 mmol) in DMSO (1 ml) was syringed. Final chromatography (CHCl₃/n-hexane – 3:1, then CHCl₃/MeOH – 100:1) afforded 2.4 mg of recovered substrate **2c** and 28.5 mg (64%) of the title product **6**.

[‡] *Characterization of the products.* [2,7-Dinitro-3,8-bis(*p*-tolylsulfonylmethyl)-5,10,15,20-tetraphenylporphyrinato]zinc(II) (**3**), mp > 300 °C. ¹H NMR (CDCl₃, 200 MHz): δ 8.63–8.47 (m, 4H, H^B-pyrrole), 8.28–8.10 (m, 8H, H-Ph), 7.81–7.65 (m, 12H, 8H of H-Ph and 4H of H-Tol), 7.10–6.93 (m, 8H, 4H of H-Ph and 4H of H-Tol), 4.64 (br. s, 4H, 2 \times CH₂), 2.30 (s, 6H, 2 \times CH₃). UV/VIS (CHCl₃), λ_{max} (log ϵ): 657.0 (3.92), 583.0 (3.75), 453.5 (5.00, Soret band), 346 nm (4.39). MS (FD), m/z (%): 1108 (19), 1107 (28), 1106 (76), 1105 (65), 1104 (89), 1103 (80), 1102 (100) [isotope M⁺]. HR-MS (FD), m/z : 1102.1843 (M⁺) (calc. for C₆₀H₄₂N₆O₈S₂Zn, m/z : 1102.1797). The molecular formula was also confirmed by comparing the theoretical and experimental isotope patterns for the M⁺ ion (C₆₀H₄₂N₆O₈S₂Zn); it was found to be identical within the experimental error limits.

[2,7-Dinitro-3,8-bis(cyanomethyl)-5,10,15,20-tetraphenylporphyrinato]zinc(II) (**4**), mp > 300 °C. ¹H NMR (CDCl₃, 400 MHz): δ 8.87–8.67 (m, 4H, H^B-pyrrole), 8.21–7.42 (m, 20H, H-Ph), 3.54 (s, 4H, 2 \times CH₂). UV/VIS (CHCl₃), λ_{max} (log ϵ): 621.0 (3.78), 572.5 (3.80), 441.0 (5.06, Soret band), 326 nm (4.31). MS (FD), m/z (%): 1688 ([2 \times M]⁺), 850 (5), 849 (14), 848 (35), 847 (22), 846 (45), 845 (36), 844 (50) [isotope M⁺], 788 (100, M – CH₂CN – O), 732 (91, M – 2 \times [CH₂CN – O]). HR-MS (FD), m/z : 844.1489 (M⁺) (calc. for C₄₈H₂₈N₈O₄Zn, m/z : 844.1525). The molecular formula was also

Online Supplementary Materials

Supplementary data associated with this article can be found in the online version at doi: 10.1016/j.mencom.2024.01.021.

References

- 1 *Handbook of Porphyrin Science*, eds. K. M. Kadish, K. M. Smith and R. Guilard, World Scientific, Singapore, 2010–2014, vols. 1–35.
- 2 S. Hiroto, Y. Miyake and H. Shinokubo, *Chem. Rev.*, 2017, **117**, 2910.
- 3 M. O. Senge, N. N. Sergeeva and K. J. Hale, *Chem. Soc. Rev.*, 2021, **50**, 4730.
- 4 *Photodynamic Tumor Therapy: 2nd and 3rd Generation Photosensitizers*, ed. J. G. Moser, Harwood Academic Publishers, Amsterdam, 1998.
- 5 J. Kou, D. Dou and L. Yang, *Oncotarget*, 2017, **8**, 81591.
- 6 J. H. Correia, J. A. Rodrigues, S. Pimenta, T. Dong and Z. Yang, *Pharmaceutics*, 2021, **13**, 1332.
- 7 (a) A. Mikus, M. Rosa and S. Ostrowski, *Molecules*, 2019, **24**, 838; (b) A. Mikus and S. Ostrowski, *Struct. Chem.*, 2022, **33**, 1251; (c) A. Mikus and S. Ostrowski, *Struct. Chem.*, 2022, **33**, 2261.
- 8 S. Ostrowski, *Polish J. Chem.*, 2005, **79**, 1169.
- 9 M. Mąkosza, *Chem. Soc. Rev.*, 2010, **39**, 2855.
- 10 M. Mąkosza, J. Goliński and A. Rykowski, *Tetrahedron Lett.*, 1983, **24**, 3277.
- 11 A. Rykowski and M. Mąkosza, *Liebigs Ann. Chem.*, 1988, 627.
- 12 M. Mąkosza, J. Goliński, S. Ostrowski, A. Rykowski and A. B. Sahasrabudhe, *Chem. Ber.*, 1991, **124**, 577.
- 13 M. Mąkosza and S. Ostrowski, *J. Prakt. Chem.*, 1988, **330**, 789.
- 14 R. Murphy and M. Cava, *Tetrahedron Lett.*, 1984, **25**, 803.
- 15 M. Mąkosza, T. Glinka, S. Ostrowski and A. Rykowski, *Chem. Lett.*, 1987, **16**, 61.
- 16 M. Mąkosza and S. Ostrowski, *J. Chem. Soc., Perkin Trans. 2*, 1991, 1093.
- 17 S. Ostrowski and R. J. Moritz, *Gazz. Chim. Ital.*, 1995, **125**, 421.
- 18 A. R. Battersby, C. J. Dutton and C. J. R. Fookes, *J. Chem. Soc., Perkin Trans. 1*, 1988, 1569.
- 19 P. A. Jacobi, S. Lanz, I. Ghosh, S. H. Leung, F. Lower and D. Pippin, *Org. Lett.*, 2001, **3**, 831.
- 20 R. B. Woodward, W. A. Ayer, J. M. Beaton, F. Bickelhaupt, R. Bonnett, P. Buchschacher, G. L. Closs, H. Dutler, J. Hannah, F. P. Hauck, S. Ito,

confirmed by comparing the theoretical and experimental isotope patterns for the M⁺ ion (C₄₈H₂₈N₈O₄Zn); it was found to be identical within the experimental error limits.

[3,7-Dinitro-2,8-bis(*p*-tolylsulfonylmethyl)-5,10,15,20-tetraphenylporphyrinato]copper(II) (**5**), mp > 300 °C. UV/VIS (CHCl₃), λ_{max} (log ϵ): 645.1 (3.89), 591.1 (3.92), 471.4 (4.89, Soret band), 408.3 (4.42), 314.4 nm (4.28). MS (FD), m/z (%): 1106 (6), 1105 (20), 1104 (42), 1103 (76), 1102 (67), 1101 (100) [isotope M⁺⁺]. HR-MS (FD), m/z : 1101.1766 (M⁺) (calc. for C₆₀H₄₂N₆O₈S₂Cu, m/z : 1101.1802). The molecular formula was also confirmed by comparing the theoretical and experimental isotope patterns for the M⁺ ion (C₆₀H₄₂N₆O₈S₂Cu); it was found to be identical within the experimental error limits.

[2,7-Dinitro-3,8-bis(phenylsulfonylmethyl)-5,10,15,20-tetraphenylporphyrinato]nickel(II) (**6**), mp > 300 °C. ¹H NMR (CDCl₃, 400 MHz): δ 8.59 (d, J = 5.1 Hz, 1H, H^B-pyrrole), 8.53 (d, J = 5.1 Hz, 1H, H^B-pyrrole), 8.45 (d, J = 5.1 Hz, 1H, H^B-pyrrole), 8.36 (d, J = 5.1 Hz, 1H, H^B-pyrrole), 8.11–7.61 (m, 20H, H-Ph^{meso}), 7.27–7.15 (m, 2H, H-Ph), 7.02–6.84 (m, 8H, H-Ph), 4.55 (br. s, 2H, CH₂), 4.38 (br. s, 2H, CH₂). UV/VIS (CHCl₃), λ_{max} (log ϵ): 618.1 (3.95), 577.1 (4.09), 472.6 (5.00, Soret band), 403.2 (4.42), 347.6 nm (4.33). MS (FD), m/z (%): 1073 (10), 1072 (21), 1071 (40), 1070 (71), 1069 (72), 1068 (100) [isotope M⁺⁺]. HR-MS (FD), m/z : 1068.1500 (M⁺) (calc. for C₅₈H₃₈N₆O₈S₂Ni, m/z : 1068.1546). The molecular formula was also confirmed by comparing the theoretical and experimental isotope patterns for the M⁺ ion (C₅₈H₃₈N₆O₈S₂Ni); it was found to be identical within the experimental error limits.

[3,7-Dinitro-2-(*p*-tolylsulfonylmethyl)-5,10,15,20-tetraphenylporphyrinato]copper(II) (**8**), mp > 300 °C. UV/VIS (CHCl₃), λ_{max} (log ϵ): 623.6 (3.82), 574.9 (3.83), 456.6 (4.86, Soret band), 399.7 (4.46), 325.6 nm (4.57). MS (FD), m/z (%): 938 (3), 937 (12), 936 (35), 935 (67), 934 (61), 933 (100) [isotope M⁺⁺]. LR-MS (FD), m/z : 933.10 (M⁺) (calc. for C₅₂H₃₄N₆O₆SCu, m/z : 933.16). The molecular formula was confirmed by comparing the theoretical and experimental isotope patterns for the M⁺ ion (C₅₂H₃₄N₆O₆SCu); it was found to be identical within the experimental error limits.

A. Langemann, E. Le Goff, W. Leimgruber, W. Lwowski, J. Sauer, Z. Valenta and H. Volz, *Tetrahedron*, 1990, **46**, 7599.

21 J.-H. Fuhrhop and K. M. Smith, in *Porphyrins and Metalloporphyrins*, ed. K. M. Smith, Elsevier, Amsterdam, 1975, ch. 19, pp. 769–770.

22 J. S. Lindsey, I. C. Schreiman, H. C. Hsu, P. C. Kearney and A. M. Margueretaz, *J. Org. Chem.*, 1987, **52**, 827.

23 A. Mikus, M. E. Bielińska, T. Lipińska and S. Ostrowski, *Synth. Commun.*, 2011, **41**, 3703.

24 M. Rosa and S. Ostrowski, *ChemistrySelect*, 2022, **7**, e202200290.

25 L. R. Subramanian, in *Science of Synthesis*, ed. S.-I. Murahashi, Thieme Chemistry, Stuttgart, 2004, vol. 19, pp. 79–426.

26 M. Tang, Y. Liang, X. Lu, X. Miao, L. Jiang, J. Liu, L. Bian, S. Wang, L. Wu and Z. Liu, *Chem.*, 2021, **7**, 2160.

27 M. Tang, Y. Liang, J. Liu, L. Wu, S. Wang, L. Bian, L. Jiang, Z.-B. Tang and Z. Liu, *Mater. Today Chem.*, 2022, **24**, 100868.

28 A. Mikus and S. Ostrowski, *Chem. Pap.* (submitted).

Received: 4th September 2023; Com. 23/7239