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S1. General information and materials

General Procedures. Solvents were purified and dried according to standard methods and stored over
activated 3A molecular sieves prior to use. Column chromatography was conducted on silica gel 60
(230—400 mesh, Merck). Glassware was dried at 120 °C in an oven for at least 3 h before the use.

Instrumentation. 'H and ®C{*H} NMR spectra were recorded on a Bruker Avance NEO 300
spectrometer at 300 MHz for H and 75 MHz for *C in CDCls. The *H and 3C NMR chemical shifts are
reported relative to the solvent signals as internal standards: & 7.26 for *H, § 77.2 for °C. Elemental analyses
were performed using a Perkin Elmer 2400 elemental analyzer. GC-MS experiments were accomplished
using an Agilent 7890A GC instrument equipped with an Agilent 5975C mass-selective detector (electron
ionization, 70 eV) and an HP-5MS column (30 m x 0.25 mm X 0.25 pum film) using He as the carrier gas at a
flow rate of 1.0 mL min2.

Materials.  1,3-Bis[2,6-bis(prop-2-yl)phenyl]-1H-imidazol-3-ium chloride (1a),%! 1,3-bis(2,4,6-
trimethylphenyl)-1H-imidazol-3-ium  chloride  (1b),5!  1,3-bis(2,4,6-trimethylphenyl)-4,5-dihydro-1H-
imidazol-3-ium  chloride  (1c),%  7,9-bis(2,4,6-trimethylphenyl)-7H-acenaphtho[1,2-d]imidazol-9-ium
chloride (1d), {1,3-bis[2,4,6-trimethylphenyl]-1,3-dihydro-2H-imidazol-2-ylidene}(chloro)-
(cyclopentadienyl)nickel (6)>* were synthesized as described in the literature. All other chemicals were

purchased from commercial sources.
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Figure S1. Overview of Ni/NHC complexes studied as precatalysts.
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S2. Extended experimental data

Table S1. Effect of reaction conditions on the yield of 2a and (IPr)Ni(Cp)CI complexes.?
v o . O @ ' @
cr " base, solvent, T °C A .
[N\\> coN [?—Nl . [N?—NI\CI
DiPP DiPP DiPP
1a Ni(Cp), 2a (PPNI(Cp)CI
Base (mol per 1 mol Yield of
Entry Solvent | Time,h | T,°C | Yieldof 2a, %° _

of IPr-HCI) (IPr)Ni(Cp)CI, %"
1 Bu'ONa (1.05) Toluene 1 25 79 trace
2 Bu'ONa (1.05) Toluene 2 25 97 trace
3 Bu'ONa (1.05) Dioxane 2 25 86 trace
4 Bu'OK (1.05) Toluene 1 25 73 trace
5 Cs2C03 (1) Toluene 1 25 1 2
6 Cs2C03 (3) Toluene 1 40 3 4
7 Cs2C0s3 (3) Toluene 1 80 20 25
8 Cs2C03 (3) Toluene 5 40 6 9
9 Cs2C03 (3) Dioxane 1 40 trace trace
10 Cs2C03 (3) Dioxane 1 80 8 72
11 Cs2C03 (3) Dioxane 5 40 11 15
12 Cs2CO0s (3) THF 1 40 3 26
13 Cs2CO03 (3) THF 1 80 2 83
14 Cs2CO3 (3) CHCI> 1 40 trace trace
15 Cs2C0s3 (3) CH3CN 1 40 21 36
16 Cs2C03 (3) acetone 1 40 54 30
17 K3POs (3) toluene 1 25 trace trace
18 K3POs4 (3) acetone 1 40 27 25
19 NaOAc (3) acetone 1 40 4 19
20 DIPEA (3) acetone 1 40 0 0

2 Reaction conditions: 1a (0.105 mmol), NiCp2 (0.1 mmol), base (1.05-3 equiv.), solvent (1 mL), 25-80 °C,

1-5 h. PYields were determined by *H NMR spectroscopy using CHsNO: as an internal standard.
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Table S2. Optimization of the reaction conditions.?

N Ni N
Cry - O e
S solvent, T °C S

3a 4a s
Entry Precatalyst (mol %) T,°C Solvent Time, h | Yield of 5a, %°
1 2a (10) 110 Toluene 5 trace
2 2a (10) 150 Xylene 5 2
3 2b (10) 110 Toluene 5 31
4 2b (10) 140 Xylene 5 78
5 2b (10) 150 Xylene 5 96
6 2b (10) 160 Xylene 5 95
7 2b (5) 150 Xylene 5 58
8 2b (15) 150 Xylene 5 97
9 2b (10) 150 Xylene 2 73
10 2b (10) 85 Xylene 20 2
11 2b (10) 110 Dioxane 5 26
12 2b (10) 85 Dioxane 20 trace
13 2b (10) 85 THF 20 0
14 2b (10) 85 CHsCN 20 0
15 2b (10) 85 DMF 20 0
16 2b (10) 150 DMF 20 0
17 2¢ (10) 150 Xylene 5 46
18 2d (10) 150 Xylene 5 38
19 6 (10) 150 Xylene 5 0
20 NiCpz2 (10) 150 Xylene 5 0

aReagents and conditions: 3a (0.25 mmol), 4a (0.3 mmol), precatalyst 2a-d, (IMes)Ni(Cp)CI (6) or NiCp2 (5-
15 mol%), o-xylene (1 mL). ®Yields were determined by CG-MS using 1,3-diisopropylbenzene as an internal

standard.
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Figure S2. Observing the formation of 1,1'-bi(cyclopenta-2,4-diene) 7 at heating of complex 2b at 150 °C
in 0-xylene. The mass spectra for the peak at ~9 min is identical to the mass-spectrum of 1,1'-
bi(cyclopenta-2,4-diene) presented in Wiley Mass-Spectra Electronic Database, John Wiley & Sons, Inc.,
Spectrum ID CAS2009 1 _015749.
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S3. Experimental procedures and characterization of synthesized

compounds
Synthesis of complexes (NHC)NiCpo.

A mixture of azolium salt 1a-d (0.55 mmol), NiCpz (95 mg, 0.5 mmol), Bu'ONa (56 mg, 0.58 mmol) in
toluene (4 mL) was stirred at 25 °C within 2 h. Then the reaction mixture was filtered through a short pad of
celite, the volatiles were removed in vacuo. The crude product was washed with pentane and recrystallized
from a toluene-pentane (~1:2) mixture.

s (IPr)NiCp2 (2a). Yield 262 mg (91%), red crystals. *H NMR (CDCls, 300 MHz): § 1.12
[%)—N@ (d, J = 6.6 Hz, 12H), 1.34 (d, J = 6.6 Hz, 12H), 3.12 (sept, J = 6.6 Hz, 4H), 3.80 (s, 5H),
N]\)iPP 5.30 (s, 5H), 7.09 (s, 2H), 7.39-7.42 (m, 4H), 7.54-7.60 (m, 2H). *3C NMR (CDCls, 75
MHz): 6 22.4, 25.7, 28.9, 92.0, 108.3, 124.1, 124.9, 129.9, 137.1, 145.9, 180.2. The

spectral characteristics of the product obtained are similar to those described in the literature.
Mos (IMes)NiCpz (2b). Yield 207 mg (84%), red crystals. *H NMR (CDCls, 300 MHz): § 2.24
[N;>_Ni (s, 12H), 2.49 (s, 6H), 3.90 (s, 5H), 5.44 (s, 5H), 7.06 (s, 2H), 7.16 (s, 4H). °C NMR
N (CDCls, 75 MHz): 6 18.5, 21.3, 92.1, 108.0, 123.9, 129.3, 135.6, 137.0, 138.9, 176.9.
Anal. calcd. for C31HasN2Ni (%): C, 75.48; H, 6.95; N, 5.68. Found (%): C, 75.43; H,

\
Mes

6.97; N, 5.77.
Mos (SIMes)NiCpz2 (2c). Yield 220 mg (89%), red crystals. *H NMR (CDCls, 300 MHz): §
[I§>_Ni 2.41 (s, 12H), 2.42 (s, 6H), 3.86 (s, 4H), 3.87 (s, 5H), 5.43 (s, 5H), 7.10 (s, 4H). 3C NMR
I;i/{es (CDCls, 75 MHz): 6 18.5, 21.3, 51.4, 92.6, 108.5, 129.7, 136.5, 137.5, 138.1, 210.3. Anal.
calcd. for CaiHssN2Ni (%): C, 75.17; H, 7.33; N, 5.66. Found (%): C, 75.26; H, 7.35; N,

5.54.

Q ;f,\des @ (IMesAN)NICp2 (2d). Yield 243 mg (79%), red crystals. *H NMR (CDCls, 300
>>—Ni MHz): & 2.32 (s, 12H), 2.54 (s, 6H), 3.98 (s, 5H), 5.51 (s, 5H), 6.92-6.94 (m, 2H),

Mes 7.18-7.28 (m, 4H), 7.34-7.39 (m, 2H), 7.69-7.72 (m, 2H). 3C NMR (CDCls, 75
MHz): § 18.6, 21.5, 92.5, 108.4, 120.3, 126.1, 127.6, 127.7, 128.4, 129.2, 129.7, 135.56, 135.64, 139.2,
139.3, 184.7. Anal. calcd. for CaiHzsN2Ni (%): C, 79.75; H, 6.20; N, 4.54. Found (%):C, C, 79.69; H, 6.24;
N, 4.46.
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Synthesis of hydroheteroarylation products 5a-I

An oven-dried vial equipped with a magnetic stirring bar and a septum was charged in air with 2b (12 mg,
0.025 mmol, 10 mol %), heterocyclic compound 3a-c (0.25 mmol), alkene 4a-d (0.3 mmol), and xylene
(1 mL). Then the resulted mixture was purged with argon by syringe via septum and heated at 150 °C and
vigorous stirring within 5 h (see Scheme 2 of the mail text). After cooling to room temperature, the mixture
was diluted with xylene (4 mL) and filtered through a short pad of Celite. Then xylene was removed in
vacuo, and the residue obtained was chromatographed on silica gel (elution with hexane, then with EtOAC).
2-(1-Phenylethyl)-1,3-benzothiazole (5a). Yield 54 mg (91%), yellow powder,

S
(:[ )—b mp 34-36 °C (1it.>® mp 33-35 °C). 'H NMR (CDCls, 300 MHz): § 1.89 (d, J=7.2
N

Hz, 3H), 4.61 (q, J=7.2 Hz, 1H), 7.27-7.48 (m, 7H) 7.77-7.81 (m, 1H), 8.02-8.05

(m, 1H). ¥C NMR (CDCls, 75 MHz): § 21.4, 45.0, 121.6, 123.0, 124.8, 126.0,

127.4, 127.8, 128.9, 135.5, 143.2, 153.3, 176.4. The spectral characteristics of the product obtained are
similar to those described in the literature.®

S 2-[1-(4-Methylphenyl)ethyl]-1,3-benzothiazole (5b). Yield 52 mg (82%),
©:N/: g yellow powder, mp 31-33 °C (lit.%® mp 32-35 °C). *H NMR (CDCls, 300 MHz): &

1.86 (d, J=7.0 Hz, 3H), 2.34 (s, 3H), 4.57 (q, J=7.0 Hz, 1H), 7.15-7.19 (m, 2H)
7.27-7.35 (m, 3H), 7.42-7.47 (m, 1H), 7.75-7.80 (m, 1H), 8.00-8.04 (m, 1H). °C
NMR (CDCls, 75 MHz): 6 21.2, 21.4, 44.6, 121.6, 122.9, 124.8, 126.0, 127.7, 129.6, 135.5, 137.1, 140.3,
153.2, 176.9. The spectral characteristics of the product obtained are similar to those described in the

literature.S®

S 2-[1-(4-Methoxyphenyl)ethyl]-1,3-benzothiazole (5¢). Yield 52 mg (78%),

©: / white powder, mp 59-61 °C (lit.5 mp 60-62 °C). *H NMR(CDClIs, 300 MHz): §

N>_§:> 1.84 (d, J=7.3 Hz, 3H), 3.80 (s, 3H), 4.54 (q, J=7.3 Hz, 1H), 6.86-6.91 (m, 2H)

one | 7-29-7:35 (m, 3H), 7.40-7.47 (m, 1H), 7.76-7.80 (m, 1H), 7.98-8.02 (m, 1H). *°C

NMR (CDCls, 75 MHz): 6 21.5, 44.2, 55.4, 114.3, 121.6, 123.0, 124.8, 126.0,

128.9, 135.4, 135.5, 153.4, 158.9, 177.1. The spectral characteristics of the product obtained are similar to
those described in the literature.®

2-(1-Phenylethyl)-5-methyl-1,3-benzoxazole (5d). Yield 55 mg (93%), orange

N
\(:[ \>—§3 oil. H NMR (CDCls, 300 MHz): & 1.82 (d, J=7.3 Hz, 3H), 2.45 (s, 3H), 4.39 (q,
(0]

J=7.3 Hz, 1H), 7.05-7.11 (m, 1H), 7.22-7.30 (m, 2H), 7.31-7.39 (m, 4H, Ar),
7.48-7.51 (m, 1H). 3C NMR (CDCls, 75 MHz): § 3C NMR (75 MHz, CDCls) &
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20.0, 21.6, 40.3, 110.0, 119.9, 125.8, 127.4, 127.6, 128.9, 134.0, 141.5, 141.5, 149.3, 169.0. The spectral

characteristics of the product obtained are similar to those described in the literature.

134.0, 137.0, 138.5, 141.5,

2-[1-(4-Methylphenyl)ethyl]-5-methyl-1,3-benzoxazole (5e). Yield 53 mg
(84%), yellow oil. *H NMR (CDCls, 300 MHz): § 1.80 (d, J=7.2 Hz, 3H), 2.32
(s, 3H), 2.45 (s, 3H), 4.36 (g, J=7.2 Hz, 1H), 7.06-7.10 (m, 1H, Ar), 7.13-7.16
(m, 2H), 7.23-7.27 (m, 2H), 7.29-7.32 (m, 1H), 7.49-7.50 (m, 1H). 3C NMR
(CDCls, 75 MHz): & 20.0, 21.2, 21.6, 39.9, 110.0, 119.9, 125.8, 127.5, 129.6,
149.3, 169.2. The spectral characteristics of the product obtained are similar to

those described in the literature.®

A\
O
OMe

125.7, 128.6, 133.6, 134.0,

@%b

2-[1-(4-Methoxyphenyl)ethyl]-5-methyl-1,3-benzoxazole (5f). Yield 54 mg

(81%), white powder, mp 73-75 °C (lit.® mp 75-76 °C). *H NMR(CDClIs, 300

MHz): § 1.78 (d, J=7.2 Hz, 3H), 2.44 (s, 3H), 3.77 (s, 3H), 4.34 (g, J=7.2 Hz,

1H), 6.82-6.89 (m, 2H), 7.05-7.09 (m, 1H), 7.24-7.32 (m, 3H), 7.47-7.49 (m,

1H). 3C NMR (CDCls, 75 MHz): § 20.0, 21.6, 39.5, 55.4, 110.0, 114.3, 119.9,
141.5, 149.2, 158.9, 169.3. The spectral characteristics of the product obtained
are similar to those described in the literature.®

2-(1-Phenylethyl)-1-methyl-1H-benzimidazole (5g). Yield 53 mg (89%), white
powder, mp 88-91 °C (lit.5® mp 89-90 °C). *H NMR (CDCls, 300 MHz): & 1.88
(d, J=7.2 Hz, 3H), 3.49 (s, 3H), 4.36 (q, J=7.2 Hz, 1H), 7.19-7.33 (m, 8H), 7.83-
7.88 (m, 1H). 3C NMR (CDCls, 75 MHz): § 21.8, 29.9, 39.1, 109.0, 119.8,

121.9, 122.4, 127.0, 127.5, 129.1, 136.3, 142.5, 143.0, 156.9. The spectral characteristics of the product

OMe

obtained are similar to those described in the literature.S®

2-[1-(4-Methylphenyl)ethyl]-1-methyl-1H-benzimidazole (5h). Yield 53 mg
(85%), yellow oil. 'H NMR (CDCls, 300 MHz): § 1.85 (d, J=7.0 Hz, 3H), 2.30
(s, 3H), 3.48 (s, 3H), 4.31 (q, J=7.0 Hz, 1H), 7.07-7.10 (m, 4H), 7.27-7.27 (m,
3H), 7.81-7.87 (m, 1H). *C NMR (CDCls, 75 MHz): § 21.1, 21.9, 29.9, 38.7,
109.0, 119.7, 121.8, 122.3, 127.3, 129.7, 136.3, 136.6, 140.0, 142.5, 157.1. The
spectral characteristics of the product obtained are similar to those described in

the literature.S®

2-[1-(4-Methoxyphenyl)ethyl]-1-methyl-1H-benzimidazole (5i). Yield 56 mg
(76%), yellow oil. *H NMR (CDCls, 300 MHz): § 1.85 (d, J=7.1 Hz, 3H), 3.50
(s, 3H), 3.78 (s, 3H), 4.32 (g, J=7.1 Hz, 1H), 6.81-6.86 (m, 2H), 7.11-7.16 (m,
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2H), 7.25-7.29 (m, 3H), 7.82-7.88 (m, 1H). ¥C NMR (CDCls, 75 MHz): § 21.9, 29.9, 38.3, 55.4, 109.0,
114.4, 119.7, 121.8, 122.3, 128.5, 135.1, 136.2, 142.4, 157.2, 158.6. The spectral characteristics of the
product obtained are similar to those described in the literature.®

S 2-(2-Norbornyl)-1,3-benzothiazole (5j). Yield 48 mg (84%), orange oil. ‘H
©: />—<Z> NMR (CDCls, 300 MHz): 6 1.25-1.35 (m, 2H), 1.41-1.50 (m, 1H), 1.54-1.72 (m,

i 3H), 1.83-1.94 (m, 1H), 2.09-2.18 (m, 1H), 2.42-2.45 (m, 1H), 2.62-2.64 (m, 1H),

3.16-3.22 (m, 1H), 7.29-7.35 (m, 1H), 7.40-7.46 (m, 1H), 7.81-7.84 (m, 1H), 7.95-7.98 (m, 1H). 3C NMR
(CDCls, 75 MHz): 6 28.9, 29.9, 36.6, 36.7, 38.4, 44.4, 47.3, 121.5, 122.7, 124.6, 125.9, 135.0, 153.3, 177.7.

The spectral characteristics of the product obtained are similar to those described in the literature.®

N 2-(2-Norbornyl)-5-methyl-1,3-benzoxazole (5k). Yield 49 mg (86%), yellow
\@2_@ oil. 'H NMR (CDCls, 300 MHz): & 1.22-1.34 (m, 2H), 1.37-1.45 (m, 1H), 1.55-
1.70 (m, 3H), 1.72-1.78 (m, 1H), 2.11-2.20 (m, 1H), 2.40-2.44 (m, 1H), 2.45 (s,
3H), 2.65-2.69 (m, 1H), 2.94-3.00 (m, 1H), 7.06-7.10 (m, 1H), 7.30-7.36 (m, 1H), 7.45 (s, 1H). 3C NMR
(CDCls, 75 MHz): & 21.6, 28.9, 29.7, 35.6, 36.4, 36.6, 41.8, 42.2, 77.2, 109.7, 119.6, 125.4, 133.8, 141.6,
149.2, 170.8. The spectral characteristics of the product obtained are similar to those described in the

literature.®
N 2-(2-Norbornyl)-1-methyl-1H-benzimidazole (51). Yield 45 mg (79%), white
@N\ powder, mp 90-92 °C (lit® mp 89-90 °C). *H NMR (CDCls, 300 MHz): § 1.21-
\ 1.27 (m, 1H), 1.30-1.38 (m, 1H), 1.40-1.48 (m, 1H), 1.59-1.82 (m, 4H), 2.29-

2.37 (m, 1H), 2.43-2.49 (m, 1H), 2.52-2.57 (m, 1H), 2.87-2.94 (m, 1H), 3.73 (s, 3H), 7.19-7.24 (m, 2H),
7.27-7.30 (m, 1H), 7.73-7.77 (m, 1H). *3C NMR (CDCls, 75 MHz): & 29.2, 29.8, 30.0, 35.8, 36.3, 36.5, 40.1,
42.0, 108.8, 119.4, 121.7, 122.0, 136.4, 142.4, 158.8. The spectral characteristics of the product obtained are
similar to those described in the literature.®
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S4.H and 3C NMR spectra
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Figure S4. 13C NMR spectrum of compound 2a (CDCls, 75 MHz).
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